Лайфхаки для тех, кто учит физику: как выучить все силы? Основные виды сил Типы сил в физике

Все окружающие нас процессы происходят в результате действия той или иной физической силы. С ее проявлением человек встречается повсюду, начиная с того, что ему приходиться прикладывать силу, чтобы встать утром с постели, и заканчивая движениями массивных космических объектов. Данная статья посвящена вопросам, что такое сила в физике, и какие ее виды существуют.

Понятие о силе

Вопрос, что такое сила в физике, начнем рассматривать с ее определения. Под ней полагают величину, способную изменять количество движения рассматриваемого тела. Математическое выражение для этого определения выглядит так:

Здесь dp¯ - это изменение количества движения (иначе его называют импульсом), dt - промежуток времени, за который оно изменяется. Отсюда видно, что F¯ (сила) является вектором, то есть для ее определения необходимо знать, как модуль (абсолютное значение), так и направление ее приложения.

Как известно, импульс измеряется в кг*м/с. Это означает, что F¯ вычисляется в кг*м/с 2 . Эта единица измерения получила название ньютона (Н) в СИ. Поскольку единица м/с 2 - это мера измерения линейного ускорения в классической механике, то из определения силы автоматически следует 2-й закон Исаака Ньютона:

В такой формуле a¯ = dv¯/dt - ускорение.

Эта формула силы в физике показывает, что в ньютоновской механике величина F¯ характеризуется ускорением, которое она может сообщить телу с массой m.

Классификация видов сил

Тема силы в физике является достаточно широкой, и при детальном рассмотрении она затрагивает фундаментальные понятия о строении материи и о процессах, происходящих во Вселенной. В данной статье мы не будем рассматривать понятие релятивистской силы (процессы, происходящие при околосветовых скоростях) и силы в квантовой механике, а ограничимся лишь ее описанием для макроскопических объектов, движение которых определяется законами классической механики.

Итак, исходя из каждодневного наблюдения за процессами в быту и природе, можно выделить следующие виды силы:

  • тяготения (тяжести);
  • воздействие опоры;
  • трения;
  • натяжения;
  • упругости;
  • отдачи.

Раскрывая вопрос, что такое сила в физике, рассмотрим каждый из названных видов подробнее.

Всемирное тяготение Ньютона

В физике действие силы тяготения проявляется в притяжении двух объектов, обладающих конечной массой. Сила тяжести является достаточно слабой, если ее сравнивать с электрическими или ядерными взаимодействиями. Она проявляется в космических масштабах (движение планет, звезд, галактик).

В XVII веке Исаак Ньютон, изучая движение планет вокруг Солнца, пришел к формулировке закона, который носит название всемирного тяготения. В физике формула силы гравитации записывается так:

Экспериментальное определение значения G было выполнено лишь в конце XVIII века Генри Кавендишем, который использовал в своем опыте крутильные весы. Этот эксперимент позволил определить массу нашей планеты.

В формуле выше, если одним из тел будет наша Земля, тогда сила тяготения для любого предмета, находящегося вблизи земной поверхности, будет равна:

F = G*M *m /R 2 = m*g,

где g = G*M/R 2

Здесь M - масса планеты, R - ее радиус (расстояние между телом и центром Земли приблизительно равно радиусу последней). Последнее выражение является математическим представлением величины, которую принято называть весом тела, то есть:

Выражение показывает, что в физике сила тяжести эквивалентна весу тела. Величину P измеряют, зная силу противодействия опоры, на которой находится данное тело.

Реакция опорной поверхности

Почему человек, дома и другие объекты не проваливается под землю? Почему книга, положенная на стол, не падает? Эти и другие подобные факты объясняются существованием силы реакции опоры, которую часто обозначают буквой N. Уже по названию понятно, что она является характеристикой воздействия на тело поверхности, на которой оно находится.

Исходя из отмеченного факта равновесия, можно записать выражение:

(для горизонтального положения тела)

То есть сила опоры равна по модулю весу тела, если оно находится на горизонтальной поверхности, и противоположна ему по направлению. Если тело расположено на наклонной плоскости, то расчет N осуществляется уже с использованием тригонометрической функции (sin(x) или cos(x)), поскольку P направлен всегда к центру Земли (вниз), а N направлена перпендикулярно плоскости поверхности (вверх).

Понимание причины возникновения силы N выходит за рамки классической механики. В двух словах скажем, что она является прямым следствием так называемого принципа запрета Паули. Согласно нему два электрона не могут находиться в одном состоянии. Этот факт приводит к тому, что если сближать два атома, то, несмотря на их 99% пустоту, электронные оболочки не смогут проникнуть друг в друга, и появляется сильное отталкивание между ними.

Сила трения

В физике этот вид силового воздействия является не менее частым, чем рассмотренные выше. Возникает трение всегда, когда объект начинает двигаться. В общем случае в физике силу трения принято относить к одному из 3-х типов:

  • покоя;
  • скольжения;
  • качения.

Первые два типа описываются следующим выражением:

Здесь μ - коэффициент трения, значение которого зависит, как от типа силы (покоя или трения), так и от материалов трущихся поверхностей.

Трение качения, ярким примером которого является движущееся колесо, рассчитывается по формуле:

Здесь R - радиус колеса, f - коэффициент, который отличается от μ не только значением, но и размерностью (μ безразмерен, f измеряется в единицах длины).

Любой тип силы трения всегда направлен против движения, прямо пропорционален силе N и не зависит от площади соприкосновения поверхностей.

Причиной появления трения между двумя поверхностями является наличие на них микронеоднородностей, приводящих к их "зацеплению" подобно маленьким крючочкам. Это простое объяснение является достаточно хорошей аппроксимацией реально происходящего процесса, который намного более сложен, и для глубокого понимания предполагает рассмотрение взаимодействий в атомных масштабах.

Приведенные формулы относятся к трению твердых тел. В случае же текучих субстанций (жидкости и газы) трение также присутствует, только оно уже оказывается пропорциональным скорости движения объекта (квадрату скорости при быстрых перемещениях).

Сила натяжения

Что такое сила в физике, когда рассматривают перемещения грузов с использованием веревок, канатов и тросов? Она называется силой натяжения. Ее принято обозначать буквой T (см. рис. выше).

Когда рассматривают задачи по физике на силу натяжения, то в них часто возникает такой простой механизм, как блок. Он позволяет перенаправлять действующую силу T. Специальные конструкции из блоков дают выигрыш в прилагаемой для подъема груза силе.

Явление упругости

Если деформации твердого тела невелики (до 1%), то после приложения внешнего усилия они полностью исчезают. Во время этого процесса деформация совершает работу, создавая так называемую силу упругости. Для пружины эта величина описывается законом Гука. Соответствующая формула имеет вид:

Здесь x - это величина смещения пружины из состояния ее равновесия (абсолютная деформация), k - коэффициент. Знак минус в выражении показывает, что сила упругости направлена против любой деформации (растяжение и сжатие), то есть она стремится восстановить равновесное положение.

Физическая причина появления сил упругости и натяжения одна и та же, она заключается в возникновении притяжения или отталкивания между атомами вещества, когда изменяется равновесное расстояние между ними.

Все знают, что при стрельбе из любого огнестрельного оружия возникает так называемая отдача. Она проявляется в том, что приклад ружья ударяет по плечу стрелка, а танк или пушка откатываются назад, когда вылетает снаряд из дула. Все это проявления силы отдачи. Формула для нее аналогична той, которая была дана в начале статьи при определении понятия "сила".

Как можно догадаться, причина появления сил отдачи заключается в проявлении закона сохранения импульса системы. Так, вылетевшая из дула ружья пуля уносит ровно такой импульс, которым приклад бьет по плечу стрелка, в итоге полное количество движения остается постоянным (равным нулю для относительно покоящейся системы).

Существует ряд законов, которые характеризуют физические процессы при механических движениях тел.

Выделяют следующие основные законы сил в физике:

  • закон силы тяжести;
  • закон всемирного тяготения;
  • законы силы трения;
  • закон силы упругости;
  • законы Ньютона.

Закон силы тяжести

Замечание 1

Сила тяжести является одним из случаев проявления действия гравитационных сил.

Силу тяжести представляют в виде такой силы, которая действует на тело со стороны планеты и придает ему ускорение свободного падения.

Свободное падение можно рассмотреть в виде $mg = G\frac{mM}{r^2}$, откуда получаем формулу ускорения свободного падения:

$g = G\frac{M}{r^2}$.

Формула определения силы тяжести будет выглядеть следующим образом:

${\overline{F}}_g = m\overline{g}$

Сила тяжести имеет определенный вектор распространения. Он всегда направлен вертикально вниз, то есть по направлению к центру планеты. На тело действует силы тяжести постоянно и это означает, что оно совершает свободное падение.

Траектория движения при действии силы тяжести зависит от:

  • модуля начальной скорости объекта;
  • направления скорости движения тела.

С этим физическим явлением человек сталкивается ежедневно.

Силу тяжести можно также представить в виде формулы $P = mg$. При ускорении свободного падения учитываются также дополнительные величины.

Если рассматривать закон всемирного тяготения, который сформулировал Исаак Ньютон, все тела обладают определенной массой. Они притягиваются друг к другу с силой. Ее назовут гравитационной силой.

$F = G\frac{m_1m_2}{r^2}$

Эта сила прямо пропорциональна произведению масс двух тел и обратно пропорциональна квадрату расстояния между ними.

$G = 6,7\cdot {10}^{-11}\ {H\cdot m^2}/{{kg}^2\ }$, где $G$ - это гравитационная постоянная и она имеет по международной системе измерений СИ постоянное значение.

Определение 1

Весом называют силу, с которой тело действует на поверхность планеты после возникновения силы тяжести.

В случаях, когда тело находится в состоянии покоя или равномерно движется по горизонтальной поверхности, тогда вес будет равен силе реакции опоры и совпадать по значению с величиной силы тяжести:

При равноускоренном движении вертикально вес будет отличаться от силы тяжести, исходя из вектора ускорения. При направлении вектора ускорения в противоположную сторону возникает состояние перегрузки. В случаях, когда тело вместе с опорой двигаются с ускорением $а = g$, тогда вес будет равен нулю. Состояние с нулевым весом называют невесомостью.

Напряженность поля тяготения высчитывается следующим образом:

$g = \frac{F}{m}$

Величина $F$ - сила тяготения, которая действует на материальную точку массой $m$.

Тело помещается в определенную точку поля.

Потенциальная энергия гравитационного взаимодействия двух материальных точек, имеющих массы $m_1$ и $m_2$, должны находиться на расстоянии $r$ друг от друга.

Потенциал поля тяготения можно найти по формуле:

$\varphi = \Pi / m$

Здесь $П$ - потенциальная энергия материальной точки с массой $m$. Она помещена в определенную точку поля.

Законы силы трения

Замечание 2

Сила трения возникает при движении и направлена против скольжения тела.

Статическая сила трения будет пропорциональна нормальной реакции. Статическая сила трения не лежит в зависимости от формы и размеров трущихся поверхностей. От материала тел, которые соприкасаются и порождают силу трения, зависит статический коэффициент трения. Однако законы трения нельзя назвать стабильными и точными, поскольку часто наблюдаются в результатах исследований различные отклонения.

Традиционное написание силы трения предполагает использование коэффициента трения ($\eta$), $N$ – сила нормального давления.

Также выделяют внешнее трение, силу трения качения, силу трения скольжения, вязкую силу трения и другие виды трения.

Закон силы упругости

Сила упругости равна жёсткости тела, которую помножили на величину деформации:

$F = k \cdot \Delta l$

В нашей классической формуле силы по поиску силы упругости главное место занимают величины жесткости тела ($k$) и деформации тела ($\Delta l$). Единицей измерения силы является ньютон (Н).

Подобная формула может описать самый простой случай деформации. Его принято называть законом Гука. Он гласит, что при попытке любым доступным способом деформировать тело, сила упругости будет стремиться вернуть форму объекта в первоначальный вид.

Для понимания и точного процесса описания физического явления вводят дополнительные понятия. Коэффициент упругости показывает зависимость от:

  • свойств материала;
  • размеров стержня.

В частности, выделяют зависимость от размеров стержня или площади поперечного сечения и длины. Тогда коэффициент упругости тела записывают в виде:

$k = \frac{ES}{L}$

В такой формуле величина $E$ является модулем упругости первого рода. Также ее называют модулем Юнга. Она отражает механические характеристики определенного материала.

При проведении расчётов прямых стержней применяется запись закона Гука в относительной форме:

$\Delta l = \frac{FL}{ES}$

Отмечается, что применение закона Гука будет носить эффективный характер только при относительно небольших деформациях. Если идет превышение уровня предела пропорциональности, то связь между деформациями и напряжениями становится нелинейной. Для некоторых сред закон Гука нельзя применять даже при небольших деформациях.

Существует огромное разнообразие понятий «сила». Оно употребляется в различных областях науки и жизнедеятельности. Наиболее обширное определение дается в физике.

Определение 1

В физике сила представляет собой меру взаимодействия различных тел.

Все тела в окружающем мире взаимно влияют друг на друга. Подобное взаимодействие порождается определенными силами. Эти силовые процессы напрямую связаны:

  • с изменением скорости;
  • с деформацией тел.

Формула силы формирует определенную математическую модель, согласно которой происходит история исследования зависимости силы от основных параметров. Результатом исследований должны стать экспериментальные доказательства существования подобной зависимости.

Сила имеет в системе СИ собственную единицу измерения. Для определения этого показателя применяют специальное научное оборудование. Простейшим прибором при измерении силы является динамометр.

Это прибор сравнивает силу, которая действует на тело, с силой упругости пружины, установленной в силометре.

Сила является векторной величиной и определяется:

  • точкой приложения;
  • направлением действия;
  • абсолютной величиной.

Определение 2

Сила в 1 ньютон (Н) – сила, под действием которой тело в 1 килограмм изменяет собственную скорость на 1 метр за одну секунду.

При описании силы в обязательном порядке указываются ее параметры.

Сила давления

Существует несколько видов взаимодействий, имеющих природное начало:

  • гравитационное взаимодействие;
  • электромагнитные взаимодействия;
  • слабые и сильные взаимодействия.

Они окружают любое тело, которое имеет массу. Сила тяжести – это сила всемирного тяготения, включая ее разновидности. В настоящее время активно изучается взаимодействие гравитационных полей во Вселенной и исследования пока не могут дать точных ответов на многие вопросы, в том числе касательно природы возникновения и существования таких сил. Источник глобального поля пока найти не удалось, однако известно, что значительная часть гравитационных сил возникает из-за электромагнитного взаимодействия на атомном уровне. Как известно, все вещества состоят из атомов и молекул. Этот факт стал основой всех современных исследований в данной сфере.

Гравитационные силы при взаимодействии тел с поверхностью Земли оказывают давление. Сила давления определяется массой тела (m) и ее можно увидеть в формуле $P=mg$, где g – ускорение свободного падения. Эта величина имеет различные показатели на разных широтах планеты.

Сила вертикального давления равна по абсолютной величине, но противоположна относительно направления силы упругости. В таком случае формула силы будет меняться исходя из движения тела.

Вес тела обычно представляют в виде действия тела на опору после взаимодействия с Землей. Величина веса тела зависит от ускорения движения, которое происходит в вертикальном направлении. Увеличение веса наблюдается при изменении направления ускорения. Оно должно действовать в противоположном направлении ускорению свободного падения. Уменьшение веса наблюдается при ускорении тела. Оно должно совпадать с направлением свободного падения.

Сила упругости

При деформации формы тела появляется еще одна сила. Она направлена на то, чтобы вернуть телу первоначальное состояние. Сила упругости может возникнуть при электрическом взаимодействии частиц. Деформации бывают двух основных видов: сжатие и растяжение. При растяжении происходит увеличении линейных размеров тела. Сжатие характеризуется обратным процессом, в ходе которого наблюдается уменьшение линейных размеров тела.

Формула силы упругости имеет следующий вид:

Она используется только при упругих деформационных процессах.

Взаимодействие магнитного поля с током

Закон Ампера описывает влияние магнитного поля на проводник с током, который помещен в него.

Силовые проявления вызываются при взаимодействии магнитного поля и электрическим зарядом, находящегося в движении.

Сила Ампера определяется по формуле:

  • $I$ – сила тока в проводнике,
  • $l$ – длина активной части проводника,
  • $В$ – магнитная индукция.

Такая зависимость говорит о том, что вектор действия магнитного поля меняется при развороте проводника, а также при изменении направления тока.

Сила Лоренца

В исследовании элементарных частиц активно используются данные спектографов, где фиксируется уровень взаимодействия магнитного поля с зарядом. В подобном процессе возникает иная сила, которую охарактеризовал при помощи своего уравнения Лоренц. Она возникает при попадании в магнитное поле заряженной частицы, которая движется с определенной скоростью.

Сила Лоренца определяется формуле в виде:

$F = vBqsinα$, где:

  • $v$ – модуль скорости частицы,
  • $В$ – магнитная индукция поля,
  • $q$ – электрический заряд изучаемой частицы.

Эта сила вызывает движение заряженной частицы по окружности.

Взаимодействие магнитного поля и вещества используется в циклотронах, где пытаются родить процесс термоядерной реакции, однако до сих пор не существует эффективного способа создания нового источника энергии.

Сила тока и работа силы

Определение 3

Сила тока – основная величина, которая характеризует протекание тока в проводнике.

Формула $I = q/t$, где $q$ – заряд, $t$ – время протекания, включает заряд, протекающий за единицу времени через поперечное сечение проводника.

Работой силы называют такую физическую величину, которая по численному составу равна произведению силы на перемещение. Она должна быть достигнута путем воздействия. Силовое воздействие на вещество сопровождается совершением работы.

Сила работы выражается следующей формулой $A = FScosα$, которая включает в себя величину силы. Само действие тела происходит при изменении скорости тела, а также возможной деформации. Это означает, что идут одновременные изменения энергии. Работа силы лежит в прямой зависимости от ее величины.

См. также «Физический портал»

Сила как векторная величина характеризуется модулем , направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором. В физике эти векторы называются свободными векторами.В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы). .

Также используется понятие линия действия силы , обозначающее проходящую через точку приложения силы прямую, по которой направлена сила.

Размерность силы - LMT −2 , единицей измерения в Международной системе единиц (СИ) является ньютон (N, Н), в системе СГС - дина .

История понятия

Понятие силы использовали ещё ученые античности в своих работах о статике и движении. Изучением сил в процессе конструирования простых механизмов занимался в III в. до н. э. Архимед . Представления Аристотеля о силе, связанные с фундаментальными несоответствиями, просуществовали в течение нескольких столетий. Эти несоответствия устранил в XVII в. Исаак Ньютон , используя для описания силы математические методы. Механика Ньютона оставалась общепринятой на протяжении почти трехсот лет. К началу XX в. Альберт Эйнштейн в теории относительности показал, что ньютоновская механика верна лишь в при сравнительно небольших скоростях движения и массах тел в системе, уточнив тем самым основные положения кинематики и динамики и описав некоторые новые свойства пространства-времени .

Ньютоновская механика

Исаак Ньютон задался целью описать движение объектов, используя понятия инерции и силы. Сделав это, он попутно установил, что всякое механическое движение подчиняется общим законам сохранения . В г. Ньютон опубликовал свой знаменитый труд « », в котором изложил три основополагающих закона классической механики (знаменитые законы Ньютона).

Первый закон Ньютона

Например, законы механики абсолютно одинаково выполняются в кузове грузовика, когда тот едет по прямому участку дороги с постоянной скоростью и когда стоит на месте. Человек может подбросить мячик вертикально вверх и поймать его через некоторое время на том же самом месте вне зависимости от того движется ли грузовик равномерно и прямолинейно или покоится. Для него мячик летит по прямой. Однако для стороннего наблюдателя, находящегося на земле, траектория движения мячика имеет вид параболы . Это связано с тем, что мячик относительно земли движется во время полета не только вертикально, но и горизонтально по инерции в сторону движения грузовика. Для человека, находящегося в кузове грузовика не имеет значения движется ли последний по дороге, или окружающий мир перемещается с постоянной скоростью в противоположном направлении, а грузовик стоит на месте. Таким образом, состояние покоя и равномерного прямолинейного движения физически неотличимы друг от друга.

Второй закон Ньютона

По определению импульса:

где − масса, − скорость .

Если масса материальной точки остается неизменной, то производная по времени от массы равна нулю, и уравнение принимает вид:

Третий закон Ньютона

Для любых двух тел (назовем их тело 1 и тело 2) третий закон Ньютона утверждает, что сила действия тела 1 на тело 2, сопровождается появлением равной по модулю, но противоположной по направлению силы, действующей на тело 1 со стороны тела 2. Математически закон записывается так:

Этот закон означает, что силы всегда возникают парами «действие-противодействие». Если тело 1 и тело 2 находятся в одной системе, то суммарная сила в системе, обусловленная взаимодействием этих тел равна нулю:

Это означает, что в замкнутой системе не существует несбалансированных внутренних сил. Это приводит к тому, что центр масс замкнутой системы (то есть той, на которую не действуют внешние силы) не может двигаться с ускорением . Отдельные части системы могут ускоряться, но лишь таким образом, что система в целом остается в состоянии покоя или равномерного прямолинейного движения. Однако в том случае, если внешние силы подействуют на систему, то ее центр масс начнет двигаться с ускорением, пропорциональным внешней результирующей силе и обратно пропорциональным массе системы.

Фундаментальные взаимодействия

Все силы в природе основаны на четырех типах фундаментальных взаимодействий. Максимальная скорость распространения всех видов взаимодействия равна скорости света в вакууме . Электромагнитные силы действуют между электрически заряженными телами, гравитационные − между массивными объектами. Сильное и слабое проявляются только на очень малых расстояниях , они ответственны за возникновение взаимодействия между субатомными частицами , включая нуклоны , из которых состоят атомные ядра .

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы , и потому применение к ним термина «сила» объясняется берущей из античности традицией объяснять любые явления в окружаемом мире действием специфических для каждого явления «сил».

Понятие силы не может быть применено по отношению к явлениям субатомного мира. Это понятие из арсенала классической физики, ассоциирующейся (пусть даже только подсознательно) с ньютоновскими представлениями о силах, действующих на расстоянии. В субатомной физике таких сил уже нет: их заменяют взаимодействия между частицами, происходящими через посредство полей, то есть каких-то других частиц. Поэтому физики высоких энергий избегают употреблять слово сила , заменяя его словом взаимодействие .

Каждый вид взаимодействия обусловлен обменом соответствующих переносчиков взаимодействия: гравитационное − обменом гравитонов (существование не подтверждено экспериментально), электромагнитное − виртуальных фотонов , слабое − векторных бозонов , сильное − глюонов (и на больших расстояниях - мезонов). В настоящее время электромагнитное и слабое взаимодействия объединены в более фундаментальное электрослабое взаимодействие . Делаются попытки объединения всех четырех фундаментальных взаимодействие в одно (так называемая теория великого объединения).

Всё многообразие проявляющих себя в природе сил в принципе может быть сведено к этим четырем фундаментальным взаимодействиям. Например, трение − это проявление электромагнитных сил, действующих между атомами двух соприкасающихся поверхностей, и принципа запрета Паули , который не позволяет атомам проникать в область друг друга. Сила, возникающая при деформации пружины , описываемая законом Гука , также является результатом действия электромагнитных сил между частицами и принципа запрета Паули, заставляющих атомы кристаллической решетки вещества удерживаться около положения равновесия. .

Однако на практике оказывается не только нецелесообразной, но и просто невозможной по условиям задачи подобная детализация рассмотрения вопроса о действии сил.

Гравитация

Гравитация (сила тяготения ) - универсальное взаимодействие между любыми видами материи . В рамках классической механики описывается законом всемирного тяготения , сформулированным Исааком Ньютоном в его труде «Математические начала натуральной философии ». Ньютон получил величину ускорения, с которым Луна движется вокруг Земли , положив при расчете, что сила тяготения убывает обратно пропорционально квадрату расстояния от тяготеющего тела. Кроме этого, им же было установлено, что ускорение, обусловленное притяжением одного тела другим, пропорционально произведению масс этих тел . На основании этих двух выводов был сформулирован закон тяготения: любые материальные частицы притягиваются по направлению друг к другу с силой , прямо пропорциональной произведению масс ( и ) и обратно пропорциональной квадрату расстояния между ними:

Здесь − гравитационная постоянная , значение которой впервые получил в своих опытах Генри Кавендиш . Используя данный закон, можно получить формулы для расчета силы тяготения тел произвольной формы. Теория тяготения Ньютона хорошо описывает движение планет Солнечной системы и многих других небесных тел. Однако, в ее основе лежит концепция дальнодействия , противоречащая теории относительности . Поэтому классическая теория тяготения неприменима для описания движения тел, перемещающихся со скоростью , близкой к скорости света, гравитационных полей чрезвычайно массивных объектов (например, черных дыр), а также переменных полей тяготения, создаваемых движущимися телами, на больших расстояниях от них .

Электромагнитное взаимодействие

Электростатическое поле (поле неподвижных зарядов)

Развитие физики после Ньютона добавило к трём основным (длина, масса, время) величинам электрический заряд с размерностью C. Однако, исходя из требований практики, основанных на удобствах измерения, вместо заряда нередко стал использоваться электрический ток с размерностью I, причём I = C T − 1 . Единицей измерения величины заряда является кулон, а силы тока ампер.

Поскольку заряд, как таковой, не существует независимо от несущего его тела, то электрическое взаимодействие тел проявляется в виде той же рассматриваемой в механике силы, служащей причиной ускорения. Применительно к электростатическому взаимодействию двух «точечных зарядов» в вакууме используется закон Кулона:

где - расстояние между зарядами, а ε 0 ≈ 8.854187817·10 −12 Ф/м. В однородном (изотропном) веществе в этой системе сила взаимодействия уменьшается в ε раз, где ε - диэлектрическая постоянная среды.

Направление силы совпадает с линией, соединяющей точечные заряды. Графически электростатическое поле принято изображать в виде картины силовых линий, представляющих собой воображаемые траектории, по которым бы перемещалась лишённая массы заряжённая частица. Эти линии начинаются на одном и заканчиваются на другом зарядах.

Электромагнитное поле (поле постоянных токов)

Существование магнитного поля признавалось ещё в средние века китайцами, использовавшим «любящий камень» - магнит, в качестве прообраза магнитного компаса. Графически магнитное поле принято изображать в виде замкнутых силовых линий, густота которых (так же, как и в случае электростатического поля) определяет его интенсивность. Исторически наглядным способом визуализации магнитного поля были железные опилки, насыпаемые, например, на лист бумаги, положенный на магнит.

Производные виды сил

Сила упругости - сила, возникающая при деформации тела и противодействующая этой деформации. В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила упругости направлена противоположно смещению, перпендикулярно поверхности. Вектор силы противоположен направлению смещения молекул.

Сила трения - сила, возникающая при относительном движении твёрдых тел и противодействующая этому движению. Относится к диссипативным силам. Сила трения имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости.

Сила сопротивления среды - сила, возникающая при движении твёрдого тела в жидкой или газообразной среде. Относится к диссипативным силам. Сила сопротивления имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости.

Сила нормальной реакции опоры - сила упругости, действующая со стороны опоры на тело. Направлена перпендикулярно к поверхности опоры.

Силы поверхностного натяжения - силы, возникающие на поверхности фазового раздела. Имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз; возникает вследствие нескомпенсированного притяжения молекул, находящихся на границе раздела фаз, молекулами, находящимися не на границе раздела фаз.

Осмотическое давление

Силы Ван-дер-Ваальса - электромагнитные межмолекулярные силы, возникающие при поляризации молекул и образовании диполей. Ван-дер-Ваальсовы силы быстро убывают с увеличением расстояния.

Сила инерции - фиктивная сила, вводимая в неинерциальных системах отсчёта для того, чтобы в них выполнялся второй закон Ньютона. В частности, в системе отсчёта , связанной с равноускоренно движущимся телом сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила и сила Кориолиса .

Равнодействующая

При расчёте ускорения тела все действующие на него силы заменяют одной силой, называемой равнодействующей. Это геометрическая сумма всех сил, действующих на тело. При этом действие каждой силы не зависит от действия других, то есть каждая сила сообщает телу такое ускорение, какое она сообщила бы в отсутствие действия других сил. Это утверждение носит название принципа независимости действия сил (принцип суперпозиции).

См. также

Источники

  • Григорьев В. И., Мякишев Г. Я. - «Силы в природе»
  • Ландау, Л. Д. , Лифшиц, Е. М. Механика - Издание 5-е, стереотипное. - М .: Физматлит , 2004. - 224 с. - («Теоретическая физика» , том I). - .

Примечания

  1. Glossary . Earth Observatory . NASA . - «Сила - любой внешний фактор, который вызывает изменение в движении свободного тела или возникновение внутренних напряжений в зафиксированном теле.» (англ.)
  2. Бронштейн И. Н. Семендяев К. А. Справочник по математике. М.: Издательство «Наука» Редакция справочной физико-математической литературы.1964.

Приведем сначала определения наиболее фундаментальных сил, лежащих в основе взаимодействия.

Сила тяжести. Это постоянная сила , действующая на любое тело, находящееся вблизи земной поверхности. Модуль силы тяжести равен весу тела.

Опытом установлено, что под действием силы тяжести любое тело при свободном падении на Землю (с небольшой высоты и в безвоздушном пространстве) имеет одно и то же ускорение , называемое ускорением свободного падения, а иногда ускорением силы тяжести:

Или . (4.7)

Эти равенства позволяют, зная массу тела, определить его вес (модуль действующей на него силы тяжести) или, зная вес тела, определить его массу. Вес тела или сила тяжести, как и величина , изменяются с изменением широты и высоты над уровнем моря; масса же является для данного тела величиной неизменной.

Сила трения. Так будем кратко называть силу трения скольжения, действующую (при отсутствии жидкой смазки) на тело движущееся по поверхности. Ее модуль определяется равенством:

где f - коэффициент трения, который будем считать постоянным; - нормальная сила прижимающая трущиеся поверхности. Более подробно, действие сил трения рассмотрены в главе «Статика».

Сила гравитационного притяжения. Это сила, с которой два материальных тела притягиваются друг к другу по закону всемирного тяготения, открытому Ньютоном. Сила тяготения зависит от расстояния и для двух материальных точек с массами m 1 и m 2 , находящихся на расстоянии r друг от друга, выражается равенством:

где - гравитационная постоянная (в СИ γ = 6,673-10 -11 м 3 /кгс 2).

Сила взаимодействия двух точечных зарядов в вакууме (кулоновская сила) прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними:

где k – коэффициент пропорциональности, зависящий от системы единиц,

(в СИ k – 9,0 10 9 Н*м 2 /Кл 2)

Сила упругости. Эта сила тоже зависит от расстояния. Ее значение можно определить исходя из закона Гука, согласно которому напряжение (сила, отнесенная к единице площади) пропорционально деформации. В частности, для силы упругости пружины получается значение:

где l - удлинение (или сжатие) пружины; с - так называемый коэффициент жесткости пружины (в СИ измеряется в Н/м).

Сила вязкого трения. Такая сила, зависящая от скорости, действует на тело при его медленном движении в очень вязкой среде (или при наличии жидкой смазки) и может быть выражена равенством:

где v - скорость тела; m - коэффициент сопротивления.



Зависимость этого вида можно получить, исходя из закона вязкого трения, открытого Ньютоном.

Сила аэродинамического (гидродинамического) сопротивления. Эта сила также зависит от скорости и действует на тело, движущееся в такой, например, среде, как воздух или вода. Обычно ее величину выражают равенством:

R=0,5с x ρSV 2 , (4.13)

где ρ - плотность среды; S - площадь проекции тела на плоскость, перпендикулярную направлению движения (площадь миделя); с х - безразмерный коэффициент сопротивления, определяемый обычно экспериментально и зависящий от формы тела и от того, как оно ориентировано при движении; V – скорость движения тела.



error: Контент защищен !!