Векторное произведение векторов равно 0 если. Векторное произведение - определения, свойства, формулы, примеры и решения. Нахождение площади параллелограмма и треугольника

Угол между векторами

Для того чтобы мы могли ввести понятие векторного произведения двух векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.

Пусть нам даны два вектора $\overline{α}$ и $\overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $\overline{α}=\overline{OA}$ и $\overline{β}=\overline{OB}$, тогда угол $AOB$ будет называться углом между этими векторами (рис. 1).

Обозначение: $∠(\overline{α},\overline{β})$

Понятие векторного произведения векторов и формула нахождения

Определение 1

Векторным произведением двух векторов называется вектор, перпендикулярный обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.

Обозначение: $\overline{α}х\overline{β}$.

Математически это выглядит следующим образом:

  1. $|\overline{α}х\overline{β}|=|\overline{α}||\overline{β}|sin⁡∠(\overline{α},\overline{β})$
  2. $\overline{α}х\overline{β}⊥\overline{α}$, $\overline{α}х\overline{β}⊥\overline{β}$
  3. $(\overline{α}х\overline{β},\overline{α},\overline{β})$ и $(\overline{i},\overline{j},\overline{k})$ одинаково ориентированы (рис. 2)

Очевидно, что внешнее произведение векторов будет равняться нулевому вектору в двух случаях:

  1. Если длина одного или обоих векторов равняется нулю.
  2. Если угол между этими векторами будет равняться $180^\circ$ или $0^\circ$ (так как в этом случае синус равняется нулю).

Чтобы наглядно увидеть, как находится векторное произведение векторов, рассмотрим следующие примеры решения.

Пример 1

Найти длину вектора $\overline{δ}$, который будет являться результатом векторного произведения векторов, с координатами $\overline{α}=(0,4,0)$ и $\overline{β}=(3,0,0)$.

Решение .

Изобразим эти векторы в декартовом координатном пространстве (рис. 3):

Рисунок 3. Векторы в декартовом координатном пространстве. Автор24 - интернет-биржа студенческих работ

Видим, что эти векторы лежат на осях $Ox$ и $Oy$, соответственно. Следовательно, угол между ними будет равняться $90^\circ$. Найдем длины этих векторов:

$|\overline{α}|=\sqrt{0+16+0}=4$

$|\overline{β}|=\sqrt{9+0+0}=3$

Тогда, по определению 1, получим модуль $|\overline{δ}|$

$|\overline{δ}|=|\overline{α}||\overline{β}|sin90^\circ=4\cdot 3\cdot 1=12$

Ответ: $12$.

Вычисление векторного произведения по координатам векторов

Из определения 1 сразу же вытекает и способ нахождения векторного произведения для двух векторов. Поскольку вектор кроме значения имеет еще и направление, находить его только при помощи скалярной величины невозможно. Но помимо него существует еще способ нахождения с помощью координат данных нам векторов.

Пусть нам даны векторы $\overline{α}$ и $\overline{β}$, которые будут иметь координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно. Тогда вектор векторного произведения (а именно его координаты) можно найти по следующей формуле:

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\α_1&α_2&α_3\\β_1&β_2&β_3\end{vmatrix}$

Иначе, раскрывая определитель, получим следующие координаты

$\overline{α}х\overline{β}=(α_2 β_3-α_3 β_2,α_3 β_1-α_1 β_3,α_1 β_2-α_2 β_1)$

Пример 2

Найти вектор векторного произведения коллинеарных векторов $\overline{α}$ и $\overline{β}$ с координатами $(0,3,3)$ и $(-1,2,6)$.

Решение .

Воспользуемся формулой, приведенной выше. Получим

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\0&3&3\\-1&2&6\end{vmatrix}=(18-6)\overline{i}-(0+3)\overline{j}+(0+3)\overline{k}=12\overline{i}-3\overline{j}+3\overline{k}=(12,-3,3)$

Ответ: $(12,-3,3)$.

Свойства векторного произведения векторов

Для произвольных смешанных трех векторов $\overline{α}$, $\overline{β}$ и $\overline{γ}$, а также $r∈R$ справедливы следующие свойства:

Пример 3

Найдите площадь параллелограмма, вершины которого имеют координаты $(3,0,0)$, $(0,0,0)$, $(0,8,0)$ и $(3,8,0)$.

Решение .

Вначале изобразим данный параллелограмм в координатном пространстве (рис.5):

Рисунок 5. Параллелограмм в координатном пространстве. Автор24 - интернет-биржа студенческих работ

Видим, что две стороны этого параллелограмма построены с помощью коллинеарных векторов с координатами $\overline{α}=(3,0,0)$ и $\overline{β}=(0,8,0)$. Используя четвертое свойство, получим:

$S=|\overline{α}х\overline{β}|$

Найдем вектор $\overline{α}х\overline{β}$:

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\3&0&0\\0&8&0\end{vmatrix}=0\overline{i}-0\overline{j}+24\overline{k}=(0,0,24)$

Следовательно

$S=|\overline{α}х\overline{β}|=\sqrt{0+0+24^2}=24$

Очевидно, что в случае векторного произведения, имеет значение порядок, в котором берутся вектора, более того,

Так же, непосредственно из определения следует, что для любого скалярного множителя k (числа) верно следующее:

Векторное произведение коллинеарных векторов равно нулевому вектору. Более того, векторное произведение двух векторов равно нулю тогда и только тогда, когда они коллинеарны. (В случае, если один из них нулевой вектор необходимо вспомнить, что нулевой вектор коллинеарен любому вектору по определению).

Векторное произведение обладает распределительным свойством , то есть

Выражение векторного произведения через координаты векторов.

Пусть даны два вектора

(как найти координаты вектора по координатам его начала и конца - см. статью Скалярное произведение векторов , пункт Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами. )

Зачем нужно векторное произведение?

Существует множество способов применения векторного произведения, например, как уже написано выше, вычислив векторное произведение двух векторов можно выяснить, коллинеарны ли они.

Или же его можно использовать как способ вычисления площади параллелограмма, построенного на этих векторах. Исходя из определения, длина результирующего вектора и есть площадь данного параллелограмма.

Также огромное количество применений существует в электричестве и магнетизме.

Он-лайн калькулятор векторного произведения.

Чтобы найти скалярное произведение двух векторов с помощью данного калькулятора, нужно ввести в первую строку по порядку координаты первого вектора, во вторую- второго. Координаты векторов могут быть вычислены по координатам их начала и конца (см. статью Скалярное произведение векторов , пункт Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами. )

Использование векторного произведения ВЕКТОРОВ

для вычисления площади

некоторых геометрических фигур

Исследовательская работа по математике

Ученика 10 Б класса

МОУ СОШ №73

Перевозникова Михаила

Руководители:

Учитель математики МОУ СОШ№73 Драгунова Светлана Николаевна

Ассистент каф. математического анализа механико-математического факультета СГУ им. Н.Г. Чернышевского Бердников Глеб Сергеевич

Саратов, 2015

Введение.

1. Теоретический обзор.

1.1. Векторы и вычисления с векторами.

1.2. Использование скалярного произведения векторов в решении задач

1.3 Скалярное произведение векторов в координатах

1.4. Векторное произведение векторов в трёхмерном Евклидовом пространстве: определение понятия.

1.5. Координаты векторного произведения векторов.

2. Практическая часть.

2.1. Связь векторного произведения с площадью треугольника и параллелограмма. Выведение формулы и геометрический смысл векторного произведения векторов.

2.2. Зная только координаты точек, найти площадь треугольника. Доказательство теоремы

2.3. Проверка на примерах правильности формулы.

2.4. Практическое использование векторной алгебры и произведения векторов.

Заключение

Введение

Как известно, многие геометрические задачи имеют два ключевых способа решения – графический и аналитический. Графический метод связан с построением графиков и чертежей, а аналитический предполагает решение задач преимущественно с помощью алгебраических действий. В последнем случае алгоритм решений задач связан с аналитической геометрией. Аналитическая геометрия – это область математики, а точнее линейной алгебры, которая рассматривает решение геометрических задач средствами алгебры на основе метода координат на плоскости и в пространстве. Аналитическая геометрия позволяет анализировать геометрические образы, исследовать линии и поверхности, важные для практических приложений. При этом в этой науке для расширения пространственного понимания фигур помимо иногда применяется векторное произведение векторов.

В связи с широким распространением трехмерных пространственных технологий, изучение свойств некоторых геометрических фигур с использованием векторного произведения представляется актуальным.

В связи с этим была обозначена цель данного проекта – использование векторного произведения векторов для вычисления площади некоторых геометрических фигур.

В связи с поставленной целью решались следующие задачи:

1. Теоретически изучить необходимые основы векторной алгебры и дать определение векторному произведению векторов в системе координат;

2. Проанализировать наличие связи векторного произведения с площадью треугольника и параллелограмма;

3. Вывести формулу площади треугольника и параллелограмма в координатах;

4. Проверить на конкретных примерах верность выведенной формулы.

1. Теоретический обзор.

    1. Векторы и вычисления с векторами

Векторомназывается направленный отрезок, для которого указано его начало и конец:

В данном случае началом отрезка является точка А , концом отрезка – точка В . Сам вектор обозначен через
или . Чтобы найти координаты вектора
, зная координаты его начальной точек А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки:

= { B x - A x ; B y - A y }

Коллинеарными называются векторы, лежащие на параллельных прямых или на одной прямой. При этом вектор отрезок, характеризующийся длиной и направлением.

Длина направленного отрезка определяет числовое значение вектора и называется длиной вектора или модулем вектора.

Длина вектора || в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат.

С векторами можно совершать различные действия.

Например, сложение. Чтобы их сложить, нужно провести сначала второй вектор из конца первого, а потом соединить начало первого с концом второго (рис. 1). Суммой векторов является другой вектор с новыми координатами.

Сумму векторов = {a x ; a y } и = {b x ; b y } можно найти воспользовавшись следующей формулой:

+ = {a x + b x ; a y + b y }

Рис. 1. Действия с векторами

Вычитая векторы, нужно сначала провести их из одной точки, а потом соединить конец второго с концом первого.

Разность векторов = {a x ; a y } и = {b x ; b y } можно найти по формуле:

- = { a x - b x ; a y - b y }

Также, векторы можно умножать на число. Результатом также будет вектор, который в k раз больше (или меньше) данного. Его направление будет зависеть от знака k: при положительном k векторы сонаправлены, а при отрицательном – противоположно направлены.

Произведение вектора = {a x ; a y } и числа k можно найти воспользовавшись следующей формулой:

k · = {k · a x ; k · a y }

А можно ли умножать вектор на вектор? Конечно, и даже двумя вариантами!

Первый вариант – скалярное произведение.

Рис. 2. Скалярное произведение в координатах

Для нахождения произведения векторов можно использовать угол  между данными векторами, показанный на рисунке 3.

Из формулы следует, что скалярное произведение равно произведению длин данных векторов на косинус угла между ними, его результатом является число. Важно, что если векторы перпендикулярны, то их скалярное произведение равно нулю, т.к. косинус прямого угла между ними равен нулю.

В координатной плоскости вектор также имеет координаты. Вектора, их координаты и скалярное произведение являются одними из самых удобных методов вычисления угла между прямыми (или их отрезками), если введена система координат. И если координаты
, то их скалярное произведение равно:

В трехмерном пространстве существует 3 оси и, соответственно, у точек и векторов в такой системе будет по 3 координаты, а скалярное произведение векторов вычисляется по формуле:

1.2. Векторное произведение векторов в трехмерном пространстве.

Вторым вариантом вычисления произведения векторов является векторное произведение. Но, чтобы его определить требуется уже не плоскость, а трехмерное пространство, в котором начало и конец вектора имеют по 3 координаты.

В отличие от скалярного произведения векторов в трёхмерном пространстве операция «векторное умножение» над векторами приводит к иному результату. Если в предыдущем случае скалярного умножения двух векторов результатом было число, то в случае векторного умножения векторов результатом будет другой вектор, перпендикулярный обоим вступившим в произведение векторам. Поэтому это произведение векторов называется векторным.

Очевидно, что при построении результирующего вектора , перпендикулярного двум, вступившим в произведение - и , может быть выбрано два противоположных направления. При этом направление результирующего вектора определяется по правилу правой руки, или правилу буравчика.Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, а четыре пальца правой руки показывали направление вращения (как бы охватывая вращающийся цилиндр), то оттопыренный большой палец покажет направление вектора-произведения (рис. 7).

Рис. 7. Правило правой руки

1.3. Свойства векторного произведения векторов.

Длина результирующего вектора определяется по формуле

.

При этом
векторное произведение. Как было сказано выше, результирующий вектор будет перпендикулярен
, а его направление определяется по правилу правой руки.

Векторное произведение зависит от порядка сомножителей, именно:

Векторное произведение ненулевых векторов равно 0, если они коллинеарны, тогда синус угла между ними будет равен 0.

Координаты векторов в трехмерном пространстве выражаются следующим образом: . Тогда координаты результирующего вектора находим по формуле

Длина результирующего вектора находится по формуле:

.

2. Практическая часть.

2.1. Связь векторного произведения с площадью треугольника и параллелограмма в плоскости. Геометрический смысл векторного произведения векторов.

Пусть нам дан треугольник ABC (рис. 8). Известно, что .

Если представить стороны треугольника АВ и АС в виде двух векторов, то в формуле площади треугольника мы находим выражение векторного произведения векторов:

Из выше сказанного можно определить геометрический смысл векторного произведения (рис. 9):

длина векторного произведения векторов равна удвоенной площади треугольника, имеющего сторонами векторы и , если их отложить от одной точки.

Другими словами, длина векторного произведения векторов и равна площади параллелограмма, построенного на векторах и , со сторонами и и углом между ними, равным .


Рис. 9. Геометрический смысл векторного произведения векторов

В связи с этим, можно привести еще одно определение векторного произведения векторов:

Векторным произведением вектора на вектор называется вектор , длина которого численно равна площади параллелограмма построенного на векторах и , перпендикулярный к плоскости этих векторов и направленный так, чтоб наименьшее вращение от к вокруг вектора осуществлялось против часовой стрелки, если смотреть с конца вектора (рис. 10).


Рис. 10. Определение векторного произведения векторов

с использованием параллелограмма

2.2. Вывод формулы для нахождения площади треугольника в координатах.

Итак, нам дан треугольник АВС в плоскости и координаты его вершин. Найдем площадь этого треугольника (рис. 11).

Рис. 11. Пример решения задачи на нахождение площади треугольника по координатам его вершин

Решение.

Для начала, рассмотрим координаты вершин в пространстве и вычислим координаты векторов АВ и АС.

По данной прежде формуле подсчитаем координаты их векторного произведения. Длина этого вектора равна 2 площадям треугольника АВС. Площадь треугольника равна 10.

Более того, если мы рассмотрим треугольник на плоскости, то первые 2 координаты векторного произведения всегда будут равны нулю, поэтому мы можем сформулировать следующую теорему.

Теорема: Пусть дан треугольник АВС и координаты его вершин (рис. 12).

Тогда .

Рис. 12. Доказательство теоремы

Доказательство.

Рассмотрим точки в пространстве и вычислим координаты векторов ВС и ВА. . По приведенной раньше формуле вычислим координаты векторного произведения этих векторов. Обратим внимание, что все члены, содержащие z 1 или z 2, равны 0, т.к. z z 2 = 0. УБРАТЬ!!!

Итак, следовательно,

2.3. Проверка правильности формулы на примерах

Найти площадь треугольника образованного векторами a = {-1; 2; -2} и b = {2; 1; -1}.

Решение: Найдем векторное произведение этих векторов:

a × b=

I(2 · (-1) - (-2) · 1) - j((-1) · (-1) - (-2) · 2) + k((-1) · 1 - 2 · 2) =

I(-2 + 2) - j(1 + 4) + k(-1 - 4) = -5 j - 5 k = {0; -5; -5}

Из свойств векторного произведения:

SΔ =

| a × b| =

√ 02 + 52 + 52 =

√ 25 + 25 =

√ 50 =

5√ 2

Ответ: SΔ = 2.5√2.

Заключение

2.4. Приложения векторной алгебры

и скалярного и векторного произведения векторов.

Где же нужны векторы? Векторное пространство и векторы носят не только теоретический характер, но и имеют вполне реальное практическое применение в современном мире.

В механике и физике многие величины имеют не только численное значение, но и направление. Такие величины называются векторными. Вместе с использованием элементарных механических понятий, опираясь на их физический смысл, многие величины рассматриваются как скользящие векторы, а их свойства описываются как аксиомами, как это принято в теоретической механике, так и при помощи математических свойств векторов. Наиболее яркими примерами векторных величин являются скорость, импульс и сила (рис. 12). Например, момент импульса и сила Лоренца математически записываются с помощью векторов.

В физике важны не только сами вектора, но в большой степени важны и их произведения, которые помогают вычислять некоторые величины. Векторное произведение полезно для определения коллинеарности векторов модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы сонаправленны или противоположно направленны.

Еще один пример: скалярное произведение используется для вычисления работы по приведенной ниже формуле, где F – вектор силы, а s – вектор перемещения.



Одним из примеров использования произведения векторов является момент силы, равный произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

Многое из того, что вычисляется в физике по правилу правой руки является векторным произведением. Найти подтверждения, привести примеры.

Стоит еще заметить, что двухмерным и трехмерным пространством не исчерпываются возможные варианты векторных пространств. Высшая математика рассматривает пространства большей размерности, в которых также определяются аналоги формул для скалярного и векторного произведения. Несмотря на то, что пространства большей размерности, чем 3, человеческое сознание неспособно представить визуально, они удивительным образом находят себе приложения во многих областях науки и промышленности.

В то же время результатом векторного произведения векторов в трёхмерном Евклидовом пространстве является не число, а результирующий вектор со своими координатами, направлением и длиной.

Направление результирующего вектора определяется по правилу правой руки, что является одним из самых удивительных положений аналитической геометрии.

Векторное произведение векторов может быть использовано в нахождении площади треугольника или параллелограмма по заданным координатам вершин, что было подтверждено выведением формулы, доказательством теоремы и решением практических задач.

Векторы широко используются в физике, где такие показатели как скорость, импульс и сила могут быть представлены в виде векторных величин и вычисляются геометрически.

Список использованных источников

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 7-9 классы: учебник для общеобразовательных организаций. М.: , 2013. 383 с.

Атанасян Л.С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 10-11 классы: учебник для общеобразовательных организаций: базовый и профильный уровни. М.: , 2013. 255 с.

Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.

Клетеник Д.В. Сборник задач по аналитической геометрии. М.: Наука, Физматлит, 1998.

Аналитическая геометрия.

Математика. Клевер.

Изучение математики онлайн.

http://ru.onlinemschool.com/math/library/vector/multiply1/

Сайт В. Глазнева.

http://glaznev.sibcity.ru/1kurs/analit/common/html/anlek7.htm

Википедия.

https://ru.wikipedia.org/wiki/%C2%E5%EA%F2%EE%F0%ED%EE%E5_%EF%F0%EE%E8%E7%E2%E5%E4%E5%ED%E8%E5

Угол между векторами

Для того чтобы мы могли ввести понятие векторного произведения двух векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.

Пусть нам даны два вектора $\overline{α}$ и $\overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $\overline{α}=\overline{OA}$ и $\overline{β}=\overline{OB}$, тогда угол $AOB$ будет называться углом между этими векторами (рис. 1).

Обозначение: $∠(\overline{α},\overline{β})$

Понятие векторного произведения векторов и формула нахождения

Определение 1

Векторным произведением двух векторов называется вектор, перпендикулярный обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.

Обозначение: $\overline{α}х\overline{β}$.

Математически это выглядит следующим образом:

  1. $|\overline{α}х\overline{β}|=|\overline{α}||\overline{β}|sin⁡∠(\overline{α},\overline{β})$
  2. $\overline{α}х\overline{β}⊥\overline{α}$, $\overline{α}х\overline{β}⊥\overline{β}$
  3. $(\overline{α}х\overline{β},\overline{α},\overline{β})$ и $(\overline{i},\overline{j},\overline{k})$ одинаково ориентированы (рис. 2)

Очевидно, что внешнее произведение векторов будет равняться нулевому вектору в двух случаях:

  1. Если длина одного или обоих векторов равняется нулю.
  2. Если угол между этими векторами будет равняться $180^\circ$ или $0^\circ$ (так как в этом случае синус равняется нулю).

Чтобы наглядно увидеть, как находится векторное произведение векторов, рассмотрим следующие примеры решения.

Пример 1

Найти длину вектора $\overline{δ}$, который будет являться результатом векторного произведения векторов, с координатами $\overline{α}=(0,4,0)$ и $\overline{β}=(3,0,0)$.

Решение .

Изобразим эти векторы в декартовом координатном пространстве (рис. 3):

Рисунок 3. Векторы в декартовом координатном пространстве. Автор24 - интернет-биржа студенческих работ

Видим, что эти векторы лежат на осях $Ox$ и $Oy$, соответственно. Следовательно, угол между ними будет равняться $90^\circ$. Найдем длины этих векторов:

$|\overline{α}|=\sqrt{0+16+0}=4$

$|\overline{β}|=\sqrt{9+0+0}=3$

Тогда, по определению 1, получим модуль $|\overline{δ}|$

$|\overline{δ}|=|\overline{α}||\overline{β}|sin90^\circ=4\cdot 3\cdot 1=12$

Ответ: $12$.

Вычисление векторного произведения по координатам векторов

Из определения 1 сразу же вытекает и способ нахождения векторного произведения для двух векторов. Поскольку вектор кроме значения имеет еще и направление, находить его только при помощи скалярной величины невозможно. Но помимо него существует еще способ нахождения с помощью координат данных нам векторов.

Пусть нам даны векторы $\overline{α}$ и $\overline{β}$, которые будут иметь координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно. Тогда вектор векторного произведения (а именно его координаты) можно найти по следующей формуле:

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\α_1&α_2&α_3\\β_1&β_2&β_3\end{vmatrix}$

Иначе, раскрывая определитель, получим следующие координаты

$\overline{α}х\overline{β}=(α_2 β_3-α_3 β_2,α_3 β_1-α_1 β_3,α_1 β_2-α_2 β_1)$

Пример 2

Найти вектор векторного произведения коллинеарных векторов $\overline{α}$ и $\overline{β}$ с координатами $(0,3,3)$ и $(-1,2,6)$.

Решение .

Воспользуемся формулой, приведенной выше. Получим

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\0&3&3\\-1&2&6\end{vmatrix}=(18-6)\overline{i}-(0+3)\overline{j}+(0+3)\overline{k}=12\overline{i}-3\overline{j}+3\overline{k}=(12,-3,3)$

Ответ: $(12,-3,3)$.

Свойства векторного произведения векторов

Для произвольных смешанных трех векторов $\overline{α}$, $\overline{β}$ и $\overline{γ}$, а также $r∈R$ справедливы следующие свойства:

Пример 3

Найдите площадь параллелограмма, вершины которого имеют координаты $(3,0,0)$, $(0,0,0)$, $(0,8,0)$ и $(3,8,0)$.

Решение .

Вначале изобразим данный параллелограмм в координатном пространстве (рис.5):

Рисунок 5. Параллелограмм в координатном пространстве. Автор24 - интернет-биржа студенческих работ

Видим, что две стороны этого параллелограмма построены с помощью коллинеарных векторов с координатами $\overline{α}=(3,0,0)$ и $\overline{β}=(0,8,0)$. Используя четвертое свойство, получим:

$S=|\overline{α}х\overline{β}|$

Найдем вектор $\overline{α}х\overline{β}$:

$\overline{α}х\overline{β}=\begin{vmatrix}\overline{i}&\overline{j}&\overline{k}\\3&0&0\\0&8&0\end{vmatrix}=0\overline{i}-0\overline{j}+24\overline{k}=(0,0,24)$

Следовательно

$S=|\overline{α}х\overline{β}|=\sqrt{0+0+24^2}=24$

Векторное произведение - это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Определить векторное произведение можно по-разному, и теоретически, в пространстве любой размерности n можно вычислить произведение n-1 векторов, получив при этом единственный вектор, перпендикулярный к ним всем. Но если произведение ограничить нетривиальными бинарными произведениями с векторным результатами, то традиционное векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности».

Определение:
Векторным произведением вектора a на вектор b в пространстве R 3 называется вектор c , удовлетворяющий следующим требованиям:
длина вектора c равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|a||b|sin φ;
вектор c ортогонален каждому из векторов a и b;
вектор c направлен так, что тройка векторов abc является правой;
в случае пространства R7 требуется ассоциативность тройки векторов a,b,c.
Обозначение:
c===a × b


Рис. 1. Площадь параллелограмма равна модулю векторного произведения

Геометрические свойства векторного произведения :
Необходимым и достаточным условием коллинеарности двух ненулевых векторов является равенство нулю их векторного произведения.

Модуль векторного произведения равняется площади S параллелограмма, построенного на приведённых к общему началу векторах a и b (см. рис.1).

Если e - единичный вектор, ортогональный векторам a и b и выбранный так, что тройка a,b,e - правая, а S - площадь параллелограмма, построенного на них (приведённых к общему началу), то для векторного произведения справедлива формула:
=S e


Рис.2. Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений

Если c - какой-нибудь вектор, π - любая плоскость, содержащая этот вектор, e - единичный вектор, лежащий в плоскости π и ортогональный к c,g - единичный вектор, ортогональный к плоскости π и направленный так, что тройка векторов ecg является правой, то для любого лежащего в плоскости π вектора a справедлива формула:
=Pr e a |c|g
где Pr e a проекция вектора e на a
|c|-модуль вектора с

При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c . Такое произведение трех векторов называется смешанным.
V=|a (b×c)|
На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами:
V=a×b c=a b×c

Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов также, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0 (нулевому вектору), если векторы параллельны либо антипараллельны.

Выражение для векторного произведения в декартовых координатах
Если два вектора a и b определены своими прямоугольными декартовыми координатами, а говоря точнее - представлены в ортонормированном базисе
a=(a x ,a y ,a z)
b=(b x ,b y ,b z)
а система координат правая, то их векторное произведение имеет вид
=(a y b z -a z b y ,a z b x -a x b z ,a x b y -a y b x)
Для запоминания этой формулы:
i =∑ε ijk a j b k
где ε ijk - символ Леви-Чивиты.



error: Контент защищен !!