Ферментативный гидролиз сахарозы. Олиго- и полисахариды. Сахароза. Гидролиз сахарозы. Крахмал Название продуктов гидролиза сахарозы

Сахароза представляет собой дисахарид С 12 Н 22 О 11 . Это нередуцирующее вещество, не реагирующее с фелинговой жидкостью. Сахароза гидролизуется под действием фермента - сахаразы (инвертазы). Реакция идет с присоединением воды и образованием молекул глюкозы и фруктозы, которые являются редуцирующими сахарами и могут быть обнаружены реакцией с фелинговой жидкостью.

С 12 Н 22 О 11 + Н 2 О = С 6 Н 12 О 6 + С 6 Н 12 О 6

сахароза глюкоза фруктоза

Наиболее активную сахарозу содержат клетки дрожжей, из которых ее легко получить. Активность сахарозы можно легко контролировать по количеству продуктов гидролиза, образующихся за определенной время, которые обнаруживаются с помощью фелинговой жидкости. Определение ведут по количеству гидролизованного раствора, которое нужно прилить к фелинговой жидкости, чтобы выпал осадок закиси меди.

Скорость гидролиза сахарозы зависит от внешних условий (температура, катализатор, реакция среды).

Оборудование:

пробирки

карандаш по стеклу

мерная пипетка на 1-2 мл

мерный цилиндр на 10 мл

баня водяная

термометр лабораторные на интервал температур 50 – 100 °С

часы песочные на 10 мин или любые другие часы.

Ход работы:

Подготовить таблицу 5 для записи схемы опыта и результатов опыта. Подготовить и подписать три пробирки, налить в них по 10 мл 20% раствора сахарозы.

В пробирки с сахарозой налить необходимое количество воды, 0,1 н раствора HCl или 0,1 н раствора NaOH.

Внести в опытные пробирки нужное количество фермента или неорганического катализатора (соляной кислоты), тщательно перемешать и поставить пробирки на 40-50 мин.

Приготовить три пробирки с раствором фелинговой жидкости (ФЖ): в каждую из трех пробирок влить по 2 мл ФЖ и дистиллированной воды. По истечении времени определить активность сахаразы или неорганического катализатора следующим образом: в три пробирки с нагретым до кипения раствором ФЖ поочередно прилить по каплям жидкость из опытных растворов до полного покраснения раствора ФЖ. Количество капель опытного раствора занести в таблицу 5.



Сравнить результаты по отдельным вариантам опыта и сделать выводы о влиянии изучаемых условий на скорость гидролиза сахарозы.

Таблица 5.- Влияние различных условий на скорость реакции

№ п/п Вариант № про бир ки * К 10 мл сахарозы вносят, мл катализатор Условия опыта (t°С, pH) Кол-во капель испытуемого раствора, пошедшее на реакцию с ФЖ
вода 0,1 н. HCl 0,1 н. NaOH
Влияние температуры фермент 1 мл 18-20°С
фермент 1 мл 40-45°С
фермент 1 мл 100°С
Влияние температуры на неорганический катализатор HCl 2 капли 18-20°С
HCl 2 капли 40-45°С
HCl 2 капли 100°С
Влияние pH среды фермент 1 мл 40-45°С (pH 4,5)
фермент 1 мл 40-45°С (pH 6,5)
фермент 1 мл 40-45°С (pH 7,5)
Влияние количества фермента фермент 1 мл 40-45°С
фермент 2мл 40-45°С
фермент 4 мл 40-45°С

Контрольные вопросы:

1. Как можно обнаружить присутствие редуцирующих сахаров?

2. Что такое ферментативный гидролиз?

3. Какие условия будут оказывать влияние на скорость гидролиза?

4. Количественное определение восстанавливающих сахаров. Ускоренный метод определения массовой доли общего сахара

Метод основан на окислении всех сахаров сернокислым раствором двухромовокислого калия до углекислоты и воды и колориметрировании образовавшегося иона Сг +3 , эквивалентного количеству вступившего в реакцию сахара.

Оборудование:

баня водяная

бумага фильтровальная лабораторная

весы лабораторные общего назначения

колбы мерные

фотоэлектроколориметр

эксикатор

Ход работы:

Приготовление сернокислого раствора двухромовокислого калия

49 г двухромовокислого калия растворяют в 300 см 3 дистиллированной воды (первый раствор). Отдельно к 300 см 3 дистиллированной воды осторожно небольшими порциями при перемешивании приливают 300 см 3 концентрированной серной кислоты и охлаждают (второй раствор). Сначала первый, а затем второй раствор осторожно переливают в мерную колбу вместимостью 1000 см 3 , охлаждают до комнатной температуры, доводят объем дистиллированной водой до метки, перемешивают.

Построение калибровочного графика производят не ранее чем через сутки после приготовления реактива.

Приготовление стандартного раствора сахарозы

1,0 г сахарозы или сахара-рафинада, предварительно высушенных в эксикаторе в течение 3-х суток, взвешивают с погрешностью не более 0,001 г, растворяют в дистиллированной воде и количественно переносят в мерную колбу вместимостью 250 см 3 . Объем раствора доводят до метки дистиллированной водой и тщательно перемешивают. Полученный раствор должен содержать 4 мг сахарозы в 1 см 3 . Раствор сахарозы готовят непосредственно перед употреблением.

Построение калибровочного графика

В пять мерных колб вместимостью каждая 100 см 3 мерным цилиндром вносят по 25 см 3 сернокислого раствора двухромовокислого калия, затем пипеткой 2, 4, 6, 8, 10 см 3 стандартного раствора сахарозы и по 23, 21, 19, 17, 15 см дистиллированной воды, чтобы объем в каждой колбе достиг 50 см 3 . Колбы с содержимым помещают в кипящую водяную баню на 10 мин, охлаждают до комнатной температуры, доводят объем дистиллированной водой до метки, тщательно перемешивают и измеряют оптическую плотность на фотоэлектроколориметре со светофильтром, имеющим максимум светопропускания при λ = 630-670 мкм (на ФЭК-56 и КФК-2 этому соответствуют красный светофильтр и кювета 30 мм).

Оптическую плотность измеряют в каждом растворе не менее 3 раз и из полученных данных берут среднеарифметическое значение.

По полученным данным строят калибровочный график, откладывая на оси ординат значения оптической плотности, а на оси абсцисс - соответствующие этим значениям массы сахарозы в миллиграммах. Калибровочный график используется для определения общего сахара.

Анализ результатов:

Навеску измельченного исследуемого изделия взвешивают с погрешностью не более 0,001 г из такого расчета, чтобы в 1 см 3 раствора было 0,004 г общего сахара.

Массу навески ) в граммах определяют по формуле:

m= 0.004V/P *100 ,

где 0,004 - оптимальная концентрация редуцирующих веществ раствора навески, г/см 3 ;

V- вместимость мерной колбы, см 3 ;

Р - предполагаемая массовая доля общего сахара в исследуемом изделии, %.

В мерную колбу вместимостью 100 см 3 мерным цилиндром вносят 25 см 3 сернокислого раствора двухромовокислого калия, 10 см 3 фильтрата исследуемого раствора и 15 см 3 дистиллированной воды. Колбу помещают в кипящую водяную баню на 10 мин, охлаждают до комнатной температуры, доводят объем дистиллированной водой до метки, тщательно перемешивают и измеряют оптическую плотность. По значению оптической плотности и калибровочному графику находят соответствующее количество общего сахара, условно выраженное в сахарозе.

Массовую долю общего сахара (X 1) в процентах, выраженную в сахарозе, определяют по формуле

X 1 =m 1 VK100/mV 1 1000,

где m- масса навески изделия, г;

m 1 - масса сахарозы, полученная по калибровочному графику, мг;

V - вместимость мерной колбы, см;

V 1 - объем исследуемого раствора, взятый для анализа, см;

1000 - коэффициент пересчета миллиграммов сахарозы в граммы;

К - поправочный коэффициент, учитывающий окисление декстринов (для изделий, содержащих патоку), определяют по табл.6.

Таблица 6.-Поправочный коэффициент, учитывающий окисление декстринов

Отношение содержания патоки к содержанию общего сахара.% Поправочный коэффициент К
2-5 6-10 11-15 16-20 21-30 0.96 0.94 0.92 0.90 0.88

Массовую долю общего сахара (X 2) в процентах в пересчете на сухое вещество определяют по формуле

X 2 =X 1 100/100-W,

где W- массовая доля влаги в исследуемом изделии, %.

За окончательный результат анализа принимают среднеарифметическое значение результатов двух параллельных определений, допускаемые расхождения между которыми в одной лаборатории не должны превышать по абсолютному значению 0,5%, а выполненных в разных лабораториях -1,0%.

Пределы допускаемых значений погрешности измерения ±1,0% при доверительной вероятности Р =0.95.

Результат вычислений округляют до первого десятичного знака.

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Олиго- и полисахариды. Сахароза. Гидролиз сахарозы. Крахмал». Молекулы углеводов моносахаридов способны взаимодействовать друг с другом, образуя цепи различной длины. На этом уроке мы рассмотрим, как это происходит и как образуются олиго- и полисахариды. Более подробно обсудим самый известный и наиболее распространенный дисахарид - о сахарозу. Рассмотрим гидролиз сахарозы. Также изучим свойства крахмала - ещё одного полисахарида.

Данный текст представляет собой неотредактированную версию стенограммы, которая в дальнейшем будет отредактирована.

Химия. 10 класс

Урок 60. Олиго- и полисахариды. Сахароза.

Гидролиз сахарозы. Крахмал

Загорский В.В., д.п.н., проф. Специализированного учебно-научного центра МГУ

(школа им. А.Н. Колмогорова при МГУ),

многократный лауреат грантов «Учитель Москвы»

17.03.2011 г.

При участии:

Морозовой Н.И., к.х.н., ст. преп. СУНЦ МГУ

Менделеевой Н.А., к.х.н., доц. СУНЦ МГУ

Олиго- и полисахариды, сахароза, гидролиз сахарозы, крахмал

Здравствуйте.

Тема сегодняшнего урока – «Олиго- и полисахариды».

Молекулы углеводов моносахаридов способны взаимодействовать друг с другом, образуя цепи различной длины. Посмотрим, как это происходит.

Взаимодействие происходит по механизму образования простых эфиров. Известно, что две молекулы спирта, одинаковые или разные, могут взаимодействовать друг с другом с выделением молекулы воды и образованием связи углерод – кислород, который и называется связью в простом эфире. Точно такие же связи возникают между молекулами моносахаридов.

Например, из глюкозы и фруктозы легко образуется дисахарид – сахароза. Две молекулы моносахарида глюкозы взаимодействуют друг с другом в кислой среде, образуя дисахарид – мальтозу. Самый известный из дисахаридов и наиболее распространенный – это сахароза. В ее состав входят два моносахарида: глюкоза в виде 6 членного цикла и фруктоза в виде 5 членного цикла.

В отличие от составляющих ее моносахаридов сахароза не дает характерных реакций, например, для альдегидов. Все остальные свойства ее обычны. Сладкий вкус, растворимость в воде, способность давать карамели.

А почему нет альдегидной реакции?

Потому что, во-первых, глюкоза в сахарозе находится в циклической форме.

Во-вторых, эта циклическая форма стабилизирована эфирной связью между двумя молекулами моносахаридов, поэтому реакции окисления не идут.

Только одна реакция сахарозы не характерна для составляющих ее моносахаридов. Разумеется, эта реакция обратная, т.е. гидролиз дисахарида в кислой среде или под действием ферментов с образованием исходных моносахаридов – глюкозы и фруктозы.

Кроме дисахарида широко распространены полисахариды, которые нам хорошо известны. Это крахмал и целлюлоза. Их формальный состав одинаков, т.е. это полимеры глюкозы. Тем не менее, свойства их существенно различаются.

Крахмал является составной частью очень многих пищевых продуктов. Он входит в состав хлеба, картофеля, всевозможных зерновых продуктов и ряда растений.

Молекула крахмала состоит из остатков a глюкозы. Структурную единицу одного звена можно представить себе следующим образом: крахмал, как полисахарид, способен гидролизоваться с образованием исходного моносахарида. Гидролиз идет либо в кислой среде при нагревании, либо под действием ферментов. Продуктом гидролиза является глюкоза.

В воде крахмал ведет себя специфически. В холодной воде крахмал практически не растворяется, а при нагревании и кипячении способен образовать вязкий раствор, так называемый крахмальный клейстер.

Рассмотрим эту реакцию на примере хорошо известного природного объекта – картофеля. Берем картофелину, разрезаем и на свежий разрез картофеля наносим рисунок йодом. Видно, что коричневатая окраска йода постепенно превращается в несколько иной цвет. В разбавленных водных растворах это синеватый оттенок, на природном объекте это может быть почти черный или серо-черный оттенок. Эта реакция характерна для всех природных продуктов, содержащих крахмал.

На основе этой реакции в химическом анализе используется так называемая йод-крахмальная бумага, которая содержит йодид калия и раствор крахмала.

Сегодня мы разобрали олиго- и полисахариды. На этом наш урок закончен.

В процессе технологической обработки пищевых продуктов сахара могут подвергаться кислотному и ферментативному гидролизу.

Кислотный гидролиз. Гидролиз дисахаридов происходит при приготовлении сладких блюд (кисели, компоты, запекание яблок), а также при приготовлении кондитерской помадки. Гидролиз сахарозы идет в подкисленной водной среде. Сахароза присоединяет молекулу воды и распадается на равные количества глюкозы и фруктозы:

C12 H22 O11 C6 H12 O6 + C6 H12 O6

гидролиз глюкоза фруктоза

Процесс называется инверсией, а эквимолекулярная смесь моносахаридов – инвертным сахаром. Инвертный сахар обладает специфическими свойствами:

1.Усиливает сладость изделий в растворах сахара малой концентрации.

2.Предохраняет от кристаллизации (засахаривания) концентрированные растворы сахарозы. Ответственна за это фруктоза, которая занимает первое место в ряду сахаров по сладости и очень гигроскопична.

Инверсионная способность кислот не одинакова. Наибольшая – у щавелевой, наименьшая - у уксусной. Промежуточное занимает лимонная и яблочная (в 10-15 раз меньше, чем у щавелевой). Следует отметить, что щавелевая кислота – яд, и в кулинарной практике не используется. Но мы о ней говорим, ибо она содержится в клеточном соке овощей и плодов

наряду с лимонной и яблочной кислотами.

Скорость реакции гидролиза сахарозы пропорциональна концентрации водородных ионов в среде, а степень инверсии сахарозы зависит от вида кислоты, ее концентрации и продолжительности теплового воздействия. На практике это имеет значение при организации технологического процесса. На пример, варка компота из летних сортов яблок. Целесообразно сначала сварить сироп с добавлением лимонной кислоты, а затем положить в него подготовленные яблоки, довести до кипения и охладить.

Ферментативный гидролиз сахарозы и мальтозы имеет место в процессе брожения дрожжевого теста и вначале выпечки продуктов из него, производстве пива, кваса, вин и т. д. Мапльтоза образуются при действии на крахмал амилолитических ферментов. Находяиеся в тесте сахароза и мальтоза под действием ферментов дрожжей подвергаются гидролизу с образованием инвертного саара. Накапливающиеся в процессе глюкоза и фруктоза ферментативным комплексом дрожжей подвергаются глубокому расщеплению с образованием этилорого спорта и углекислого газа. Также может идти молочнокислое брожение при участие молочнокислых бактерий. рН теста сдвигается в кислую сторону.

Сахароза пищевых продуктов при производстве блюд и изделий нагревается при варке до t 0 С=102 0 С, а при жарке до 135 0 С и выше. В присутствии кислот, под влиянием теплового воздействия сахара разлагаются, происходит их инверсия , т. е. Расщепление на глюкозу и фруктозу.

Смесь глюкозы и фруктозы называют инвертным сахаром. Он имеет более сладкий вкус, изменяет удельное вращение раствора с правого на левое, предохраняет растворы от засахаривания.

Это явление отмечается при тепловой обработке фруктов и ягод в присутствии сахара (варка компотов, джемов, варенья), варке помадки, выпекании яблок, приготовлении фруктово-ягодных напитков т. д.

Фруктоза инвертного сахара не только увеличивает его сладость, но и делает его самым гигроскопичным сахаром.

Повышенная гигроскопичность инвертного сахара и поглощение им воды из окружающей среды ограничивает применение её (фруктозы) в кондитерской промышленности. А для таких изделий как мармелад, некоторые виды пастилы, применение фруктозы и инвертного сахара, наоборот, желательно, т. к. эти кондитерские изделия не должны быстро высыхать.

Инверсия сахарозы ускоряется в присутствии кислот. В плодах и ягодах содержатся в основном лимонная и яблочная кислоты, в значительно меньшей степени такие кислоты как винная, щавелевая, янтарная, салициловая.

Лимонная кислота содержится в основном в цитрусовых плодах и в ягодах, как в свободном состоянии, так и в виде солей, а яблочная – в семечках и косточках плодов. Активная кислотность (рН) плодов и ягод от 2,6 до 6.

Степень инверсии сахарозы зависит от времени и температуры её тепловой обработки, а также от вида и концентрации содержащейся в продуктах кислоты. С повышением температуры и увеличением сроков тепловой обработки степень гидролиза увеличивается. В менее концентрированных по сахару системах, при одинаковых условиях, гидролиз идет лучше, чем в более концентрированных.

Так как ион водорода выполняет функцию катализатора процесса гидролиза, то важно знать его источник. Лучшими инверсионными способностями обладают минеральные кислоты, особенно соляная. Наибольшей инверсионной способностью среди органических кислот обладает щавелевая кислота

в 10 раз меньшей – лимонная,

в 15 раз – яблочная,

в 17 раз – молочная,

в 35 раз – янтарная,

в 45 раз – уксусная.

Количество инвертированной сахарозы в продукте зависит от продолжительности тепловой обработке. Так, если варить в сахарном сиропе (18%) очищенные и нарезанные яблоки, количество инвертированной сахарозы колеблется от 14 – 19% от общего количества. Если при варке яблок, варенья, компотов добавляют лимонную кислоту, то степень инверсии сахарозы повышается до 50%.

Однако варка моркови, свеклы (с высоким содержанием сахаров) не сопровождается инверсией содержащихся в них сахаров, т. к. активная кислотность этих овощей очень малая (рН 6,3 – 6,7), а содержащаяся в них яблочная кислота обладает небольшой инверсионной способностью.

Глубокий распад сахаров наблюдается при проведении целого ряда кулинарных процессов.

    При приготовлении и в начальной стадии выпечки дрожжевого теста - брожение .

    В процессе нагревания сахара или сахарного сиропа - карамелизация.

    При тепловой обработке пищевых продуктов, содержащих редуцирующие сахара и свободные аминокислоты - меланоидинообразование.

Брожение

При производстве дрожжевого теста основную роль играет процесс брожения, при котором глубокому расщеплению подвергаются моносахариды (глюкоза и фруктоза), содержащиеся в муке и образующиеся в тесте в результате гидролиза сахарозы и мальтозы.

Среди многочисленных процессов протекающих при брожении теста, основную роль играет спиртовое брожение, в результате которого гексозы распадаются на углекислый газ и этиловый спирт.

С 6 Н 12 О 6 2СО 2 + 2С 2 Н 5 ОН

Углекислый газ и этиловый спирт являются окончательными продуктами химических реакций, каждая из которых протекает под воздействием особого фермента.

При спиртовом брожении в незначительных количествах образуются побочные продукты: янтарная кислота, сивушные масла (смесь спирта амилового, изоамилового, бутилового и др.), уксусный альдегид, глицерин и др. Наиболее легко подвергается сбраживанию глюкоза и фруктоза, медленнее вступает в реакцию галактоза. Пентозы дрожжами не сбраживаются.

Дисахариды и мальтоза сбраживаются только после предварительного гидролиза на составляющие их моносахариды.

Глубокий распад гексоз происходит также в процессе молочнокислого брожения, сопутствующего спиртовому:

С 6 Н 12 О 6 2СН 3 СНОНСООН (молочная кислота)

Вызывается молочнокислое брожение попадающими в тесто с мукой гомо- и гетероферментативными молочнокислыми бактериями.

Гомоферментативные бактерии образуются из гексоз молочную кислоту, а гетеро- дополнительно ещё образуют уксусную кислоту, этиловый спирт и др. продукты. Такие процессы происходят так же в процессе приготовления кисломолочных продуктов (за счет лактозы), квасов, заквашивания овощей, фруктов.

Неэнзематическое побурение сахаристых веществ


Среди основных изменений сахаров, которые происходят под действием высоких температур, есть изменения внешнего вида, цвета, вкуса, запаха и физико-химических показателей. Объединяющим признаком среди этих изменений является изменение цвета, поэтому их называют еще неэнзиматическое побурение (или неферментативное покоричневение).

Продукты неэнзиматического побурения делятся на продукты, которые формируются за счет преобладания процесса карамелизации, и продукты, формирующиеся в процессе меланоидинообразования.

Нагревание сахаров до высоких температур вызывает их глубокие изменения с появлением новых темно-окрашенных продуктов, при этом процесс называется карамелизация. Происходящие при этом процессы ещё не достаточно изучены, протекающие процессы зависят как от состава сахаров, так и от условий его нагрева.

Кислоты католически ускоряют этот процесс. При нагревании сахарозы при температуре 160-185 0 С образуются моносахариды глюкоза и фруктоза. Наиболее чувствительна к последующему нагреванию фруктоза, скорость её изменения в 7 раз больше глюкозы. Поэтому при дальнейшем нагревании от фруктозы отщепляется вода и образуется фруктозан, а затем от глюкозы отщепляется вода и образуется ангидрид глюкозы глюкозан:

С 12 Н 22 О 11 С 6 Н 12 О 6 + С 6 Н 12 О 6

сахароза глюкоза фруктоза

фруктоза фруктозан

С 6 Н 12 О 6 С 6 Н 10 О 5 (ангидрид)

глюкоза глюкозан

При дальнейшем повышении температуры оба ангидрида соединяясь, образуют изосахарозан (реверсия)

С 6 Н 10 О 5 + С 6 Н 10 О 5 = С 12 Н 20 О 10

Сахароза – органическое соединение, которое является дисахаридом. Его молекула состоит из остатков d-глюкозы и d-фруктозы. Что представляет собой гидролиз сахарозы, и какие вещества образуются в процессе этой реакции?

Общая характеристика сахарозы

Сахароза – вещество, входящее в класс углеводов. Она считается дисахаридом, так как состоит из двух моносахаридов: фруктозы и глюкозы.В естественных условиях она встречается во многих фруктах, овощах и ягодах. Особенно ее много в сахарной свекле и сахарном тростнике. По внешнему виду представляет собой бесцветные кристаллы, которые при плавлении превращаются в карамель. Температура плавления составляет 186 градусов. Сахароза хорошо растворяется в воде и этаноле, но плохо – в метаноле, и совершенно не растворима в диэтиловом эфире.

Рис. 1. Сахароза – бесцветные кристаллы.

Химическая формула сахарозы выглядит следующим образом: С 12 H 22 O 11 .

Рис. 2. Структурная формула сахарозы.

Химическими особенностями сахарозы является то, что она не проявляет восстанавливающих свойств, не проявляет свойств альдегидов и кетонов.

Cахароза имеет несколько названий. Часто это вещество называют свекловичным или тростниковым сахаром.

Гидролиз сахарозы

Гидролиз – химическая реакция, в процессе которой вода реагирует с каким-либо веществом. Уравнение реакции гидролиза сахарозы выглядит следующим образом:

C 6 H 12 O 11 +H 2 O=C 6 H 12 O 6 +C 6 H 12 O 6

– в результате этой химической реакции образуются фруктоза и глюкоза.

Рис. 3. Фруктоза и глюкоза формулы.

Если раствор сахарозы довести до кипения с небольшим количеством серной или соляной кислоты и добавить щелочь, чтобы нейтрализовать кислоту, а потом снова нагреть получившуюся жидкость, то в результате этой реакции образуются молекулы, которые восстанавливают гидроксид меди до оксида меди.

Cкорость реакции гидролиза сахарозы зависит исключительно от концентрации сахарозы в растворе.

Сахароза является важным элементом, обеспечивающим человеческий организм энергией. Также она стимулирует работу мозга, а также защищает внутренние органы от воздействия токсических веществ. Недостаток вещества может очень пагубно сказаться на работе организма и вызвать апатию, раздражительность, упадок сил и депрессию. Однако избыток также может отрицательно сказаться на организме человека. Это может быть вызвано ожирением, кариесом, высоким риском развития диабета.

Что мы узнали?

Сахароза содержится в большинстве растений и во множестве продуктов. Главным продуктом, который является источником сахарозы, служит обычный сахар. При гидролизе (реакции химического вещества с водой) сахарозы образуются фруктоза и глюкоза.



error: Контент защищен !!