Учение о центрах происхождения культурных растений. Закон гомологических рядов в наследственной изменчивости Н.И. Вавилова Формулировка закона гомологических рядов н и вавилова

Мутации, возникающие в естественных условиях без воздействия на организм различных факторов, называются спонтанными. Главной особенностью проявления спонтанных мутаций является то, чтогенетически близкие виды и роды характеризуются наличием похожих форм изменчивости. Закономерность о наличии гомологических рядов в наследственной изменчивости установил выдающийся генетик и селекционер, академик Н.И. Вавилов (1920 г). Он выявил, что гомологические ряды имеются не только на видовом и родовом уровнях у растений, но и могут также встречаться у млекопитающих и у человека.

Сущность закона заключается в том, что генетически близкие роды и виды характеризуются гомологическими (сходными) рядами в наследственной изменчивости . В основе схожей генотипической изменчивости лежит аналогичный генотип у близкородственных форм (т. е. набор генов, их положение в гомологичных локусах). Поэтому, зная формы изменчивости, например, ряд мутаций у видов в пределах одного рода, можно предположить наличие таких же мутаций у других видов данного рода или семейства. Сходные мутации у генетически родственных видов Н.И. Вавилов назвал гомологическими рядами в наследственной изменчивости. Примеры :

1) представители семейства злаков имеют сходный генотип. В пределах родов данного семейства (у пшеницы, ржи, овса и др.) наблюдаются сходные мутации. К ним можно отнести следующие: голозернистость, безостость, полегаемость, различная консистенция и окраска зерна и т.д. Особенно часто встречаются безостые формы пшеницы, ржи, овса, риса;

2) у человека и млекопитающих встречаются сходные мутации: короткопалость (овцы, человек), альбинизм (крысы, собаки, человек), сахарный диабет (крысы, человек), катаракта (собаки, лошади, человек), глухота (собаки, кошки, человек) и др.

Закон гомологических рядов наследственной изменчивости универсален. Медицинская генетика использует этот закон для изучения болезней у животных и разработки способов их лечения применительно к человеку. Установлено, что онкогенные вирусы передаются через половые клетки, встраиваясь в их геном. При этом у потомков возникают созаболевания, сходные с родительскими. Изучена последовательность нуклеотидов в ДНК у многих близкородственных видов, и степень сходства составляет более 90 %. Это означает, что однотипные мутации можно ожидать у родственных видов.

Закон имеет широкое применение в селекции растений. Зная характер наследственных изменений у одних сортов, можно предвидеть сходные изменения у родственных им сортов, воздействуя на них мутагенами или с помощью генной терапии. Так можно вызвать у них полезные изменения.

Модификационная изменчивость (по Ч. Дарвину – определенная изменчивость) – это изменения фенотипа под действием факторов внешней среды, которые не наследуются, и генотип остается неизменным.

Изменения фенотипа под влиянием факторов внешней среды у генетически идентичных особей, называются модификациями . Модификации иначе называют изменениями степени выраженности признака. Появление модификаций связано с тем, что факторы среды (температура, свет, влага и др.) воздействуют на активность ферментов и в определенных пределах изменяют течение биохимических реакций. Модификационная изменчивость носит приспособителоьный характер, в отличие от мутационной изменчивости.

Примеры модификаций:

1) стрелолист имеет 3 типа листьев, различающиеся по форме, в зависимости от действия экологического фактора: стреловидные, располагающиеся над водой, овальные – на поверхности воды, линейные – погружены в воду;

2) у гималайского кролика на месте сбритой белой шерсти при помещении его в новые условия (температура 2 С) отрастает черная шерсть;

3) при использовании определенных видов кормов масса тела и удойность коров значительно увеличиваются;

4) листья ландыша на глинистых почвах широкие, темно-зеленые, а на бедных песчаных – узкие и бледной окраски;

5) растения одуванчика, переселенные высоко в горы, или в области с холодным климатом, не достигают нормальных размеров, и вырастают карликовыми.

6) при избыточном содержании в почве калия рост растений усиливается, а если в почве много железа, то на белых лепестках появляется буроватый оттенок.

Свойства модификаций:

1) модификации могут возникать у целой группы особей, т.к. это групповые изменения степени выраженности признаков;

2) изменения носят адекватный характер, т.е. соответствуют виду и продолжительности воздействия определенного фактора среды обитания (температура, свет, влажность почвы и т.д.);

3) модификации образуют вариационный ряд, поэтому их относят к количественным изменениям признаков;

4) модификации имеют обратимый характер в пределах одного поколения, т. е. со сменой внешних условий у особей меняется степень выраженности признаков. Например, у коров с изменением кормления может измениться удой молока, у человека под влиянием ультрафиолетовых лучей появляется загар, веснушки и т. д.;

5) модификации не наследуются;

6) модификации носят адаптивный (приспособительный) характер, т. е. в ответ на изменение условий среды у особей проявляются фенотипические изменения, способствующие их выживанию. Например, домашние крысы адаптируются к ядам; у зайцев меняется сезонная окраска;

7) группируются вокруг среднего значения.

Под влиянием внешней среды, в большей степени, изменяются длина и форма листьев, рост, масса и др.

Однако под влиянием среды признаки могут изменяться в определенных пределах. Норма реакции – это верхняя и нижняя границы, в которых может изменяться признак. Эти пределы, в которых может изменяться фенотип, определяются генотипом. Пример 1 : надой молока от одной коровы составляет 4000–5000 л/год. Это свидетельствует о том, что в таких пределах наблюдается изменчивость данного признака, и норма реакции составляет 4000–5000 л/год. Пример 2 : если высота стебля высокорослого сорта овса варьирует от 110 до 130 см, то норма реакции данного признака равна 110–130 см.

Разные признаки обладают разной нормой реакции – широкой и узкой. Широкая норма реакции – длина листьев, масса тела, удойность коров и др. Узкая норма реакции – жирность молока, окраска семян, цветков, плодов и т. д. Количественные признаки обладают широкой нормой реакции, а качественные – узкой нормой реакции.

Статистический анализ модификационной изменчивости на примере числа колосков в колосе пшеницы

Поскольку модификация – это количественное изменение признака, то можно произвести статистический анализ модификационной изменчивости и вывести среднюю величину модификационной изменчивости, или вариационного ряда. Вариационный ряд изменчивости признака (т. е. количества колосков в колосьях) – расположение в ряд колосьев по возрастанию количества колосков. Вариационный ряд состоит из отдельных вариант (вариаций). Если подсчитать число отдельных вариант в вариационном ряду, то можно увидеть, что частота их встречаемости неодинакова. Варианты (вариации) – это число колосков в колосьях пшеницы (единичное выражение признака). Чаще всего встречаются средние показатели вариационного ряда (число колосков варьирует от 14 до 20). Например, в 100 колосьях нужно определить частоту встречаемости разных вариант. По результатам подсчетов видно, что чаще всего встречаются колосья со средним числом колосков (16–18):

В верхнем ряду показаны варианты – от наименьшей величины к большей. Нижний ряд – это частота встречаемости каждой варианты.

Распределение вариант в вариационном ряду можно показать наглядно с помощью графика. Графическое выражение изменчивости признака называется вариационной кривой , которая отражает пределы вариации и частоту встречаемости конкретных вариаций признака (рис. 36).

V

Рис . 36 . Вариационная кривая числа колосков в колосе пшеницы

Для того, чтобы определить среднюю величину модификационной изменчивости колосьев пшеницы, необходимо учесть следующие параметры:

Р – число колосьев с определенным количеством колосков (частота встречаемости признака);

n – общее число вариант ряда;

V – число колосков в колосе (варианты, образующие вариационный ряд);

М – средняя величина модификационной изменчивости, или среднее арифметическое вариационного ряда колосьев пшеницы определяется по формуле:

M=–––––––––– (средняя величина модификационной изменчивости)

2х14+7х15+22х16+32х17+24х18+8х19+5х20

M=–––––––––––––––––––––––––––––––––––––––––––– = 17, 1.

Средняя величина модификационной изменчивости имеет практическое применение при решении проблемы повышения продуктивности сельскохозяйственных растений и животных.

Закон, который был открыт выдающимся отечественным ученым Н. И. Вавиловым, является мощнейшим стимулятором селекции новых видов растений и животных, которые выгодны для человека. Даже в настоящее время данная закономерность играет большую роль в изучении эволюционных процессов, разработке акклиматизационной базы. Результаты исследований Вавилова важны и для истолкования различных биогеографических явлений.

Сущность закона

Вкратце закон гомологических рядов звучит следующим образом: спектры изменчивости у родственных типов растений похожи между собой (нередко это бывает строго фиксированное число тех или иных вариаций). Вавилов изложил свои идеи на III селекционном съезде, который проходил в 1920 году в Саратове. Чтобы продемонстрировать действие закона гомологических рядов, он собрал всю совокупность наследственных признаков культурных растений, расположил их в одной таблице и сравнил известные на тот момент сорта и подвиды.

Изучение растений

Вместе со злаковыми Вавилов рассматривал и бобовые. Во многих случаях обнаружилась параллельность. Несмотря на то что у каждого семейства фенотипические признаки различались, у них были свои особенности, форма выражения. К примеру, цвет семян практически у любого культурного растения варьировался от самого светлого до черного. У хорошо изученных исследователями культурных растений было обнаружено до нескольких сотен признаков. У других же, что являлись на тот момент менее изученными или же дикими родственниками окультуренных растений, признаков наблюдалось гораздо меньше.

Географические центры распространения видов

Основой для открытия закона гомологических рядов послужил материал, который Вавилов собрал во время своей экспедиции по странам Африки, Азии, Европы и Америки. Первые предположения о том, что существуют некие географические центры, откуда берут свое начало биологические виды, было сделано швейцарским ученым А. Декандолем. По его представлениям, когда-то эти виды охватывали большие территории, иногда и целые континенты. Однако именно Вавилов был тем исследователем, который смог изучить многообразие растений на научной основе. Он использовал метод, называемый дифференцированным. Вся та коллекция, которая была собрана исследователем во время экспедиций, подвергалась тщательному анализу с помощью морфологических и генетических методов. Так можно было определить конечную область сосредоточения разнообразия форм и признаков.

Карта растений

Во время этих поездок ученый не запутался в многообразии видов различных растений. Всю информацию он наносил при помощи цветных карандашей на карты, затем переводя материал в схематический вид. Таким образом, ему удалось обнаружить, что на всей планете существует всего несколько центров разнообразия окультуренных растений. Ученый показал непосредственно при помощи карт, как из этих центров виды «расползаются» по другим географическим регионам. Некоторые из них уходят на небольшое расстояние. Другие завоевывают весь мир, как это произошло с пшеницей и горохом.

Следствия

Согласно закону гомологической изменчивости, все генетически близкие между собой сорта растений обладают приблизительно равными рядами наследственной изменчивости. При этом ученый допускал, что даже похожие внешне признаки могут иметь различную наследственную основу. Учитывая тот факт, что каждый из генов имеет способность к мутациям в разных направлениях и что данный процесс может протекать без определенного направления, Вавилов сделал предположение, что и количество генных мутаций у родственных видов будет приблизительно одинаковым. Закон гомологических рядов Н. И. Вавилова отражает общие закономерности процессов генной мутации, а также формообразования различных организмов. Он является главной основой изучения биологических видов.

Вавилов показал также и следствие, которое вытекало из закона гомологических рядов. Оно звучит следующим образом: наследственная изменчивость практически у всех видов растений варьируется параллельно. Чем более близкими между собой являются виды, тем в большей степени проявляется данная гомология признаков. Сейчас этот закон повсеместно применяется в селекции сельскохозяйственных культур, а также животных. Открытие закона гомологических рядов является одним из самых крупных достижений ученого, которое принесло ему мировую славу.

Происхождение растений

Ученый создал теорию о происхождении культурных растений в отдаленных друг от друга в различные доисторические эпохи точках земного шара. Согласно закону гомологических рядов Вавилова, у родственных видов растений и животных обнаруживаются похожие вариации изменчивости признаков. Роль этого закона в растениеводстве и животноводстве можно сопоставить с той ролью, которую играет таблица периодических элементов Д. Менделеева в химии. Используя свое открытие, Вавилов пришел к выводу о том, какие территории являются первоисточниками определенных типов растений.

  • Китайско-японскому региону мир обязан происхождением риса, проса, голозерных форм овса, многих типов яблонь. Также территории данного региона являются родиной ценных сортов слив, восточной хурмы.
  • кокосовой пальмы и сахарного тростника - Индонезийско-Индокитайский центр.
  • С помощью закона гомологических рядов изменчивости Вавилову удалось доказать огромное значение полуострова Индостан в развитии растениеводства. Данные территории являются родиной некоторых типов фасоли, баклажанов, огурцов.
  • На территории среднеазиатского региона традиционно выращивались грецкие орехи, миндаль, фисташки. Вавилов открыл, что именно эта территория является родиной репчатого лука, а также первичных типов моркови. В древности выращивали абрикосы. Одними из самых лучших в мире являются дыни, которые были выведены на территориях Средней Азии.
  • На Средиземноморских территориях впервые появился виноград. Здесь также происходил процесс эволюции пшеницы, льна, различных сортов овса. Также достаточно типичных элементов флоры средиземноморья является оливковое дерево. Здесь же началось и окультуривание люпина, клевера и льна.
  • Флора австралийского континента подарила миру эвкалипты, акации, хлопчатник.
  • Африканский регион - родина всех типов арбузов.
  • На Европейско-Сибирских территориях происходило окультуривание сахарной свеклы, сибирской яблони, лесного винограда.
  • Южная Америка - родина хлопчатника. Территория Анд является и некоторых видов томатов. На территориях Древней Мексики произрастала кукуруза и некоторые виды фасоли. Также здесь возник табак.
  • На территориях Африки древний человек использовал сначала только местные виды растений. Черный континент является родиной кофе. На территории Эфиопии впервые появилась пшеница.

Используя закон гомологических рядов изменчивости, ученый может выявить центр происхождения растений по тем признакам, которые схожи с формами видов из другой географической местности. Помимо необходимого разнообразия флоры, для того чтобы возник крупный очаг разнообразных культурных растений, нужна также и земледельческая цивилизация. Так считал Н. И. Вавилов.

Одомашнивание животных

Благодаря открытию закона гомологических рядов наследственной изменчивости стало возможным открытие тех мест, где когда-то впервые произошло одомашнивание животных. Считается, что оно происходило тремя путями. Это сближение человека и животных; насильственное приручение молодых особей; одомашнивание взрослых особей. Территории, на которых происходило одомашнивание диких животных, предположительно находятся в местах обитания их диких сородичей.

Приручение в разные эпохи

Считается, что собака была одомашнена в эпоху мезолита. Свиней и коз человек начал разводить в эпоху неолита, а немного позднее были приручены и дикие лошади. Однако еще недостаточно ясен вопрос о том, кем были предки современных домашних животных. Считается, что предками крупного рогатого скота были туры, лошадей - тарпаны и лошади Пржевальского, домашнего гуся - дикий серый гусь. Сейчас процесс одомашнивания животных нельзя назвать завершенным. Например, в процессе приручения находятся песцы и дикие лисы.

Значение закона гомологических рядов

При помощи данного закона можно не только установить происхождение определенных видов растений и очаги приручения животных. Он позволяет предсказать появление мутаций, сравнивая закономерности мутирования у других типов. Также с помощью данного закона можно предсказать изменчивость признака, возможность появления новых мутаций по аналогии с теми генетическими отклонениями, что были обнаружены у других видов, родственных данному растению.

При сравнении признаков различных сортов культурных растений и близких к ним диких видов Μ. И. Вавилов обнаружил много общих наследственных изменений. Это позволило ему сформулировать в 1920 году закон гомологических рядов в наследственной изменчивости : генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, изучив ряд форм в пределах одного вида или рода, можно предположить Наличие форм с подобными сочетаниями признаков в пределах близких видов или родов.

Примеры, иллюстрирующие эту закономерность, такие: в пшеницы, ячменя и овса встречаются белый, красный и черный цвета колоса; в злаковых известны формы с длинными и короткими остями и др. Μ. И. Вавилов указывал, что гомологичные ряды часто выходят за пределы родов и даже семейств. Короткопалисть отмечена у представителей многих рядов млекопитающих: у крупного рогатого скота, овец, собак, человека. Альбинизм наблюдается у всех классов позвоночных животных.

Закон гомологических рядов позволяет предусмотреть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм. В 1920 году, когда был сформулирован закон гомологических рядов, еще не знали озимой формы твердой пшеницы, но ее существование было предусмотрено. Через несколько лет такую форму обнаружили в Туркмении. В злаков (пшеницы, ячменя, овса, кукурузы) существуют голые и пленочные зерна. Голозерний сорт проса не был известен, но существование такой формы следовало ожидать, и он был найден. В основе гомологических рядов лежит фенотипической сходство, которая возникает как результат действия одинаковых аллелей того же гена, так и действия различных генов, обусловливающих подобные цепи последовательных биохимических реакций в организме.

Закон гомологических рядов дает ключ для понимания эволюции родственных групп, облегчает поиски наследственных отклонений для селекции, в систематике дает возможность находить новые ожидаемые формы. Закон прямо касается изучения наследственных болезней человека. Вопросы лечения и профилактики наследственных болезней нельзя решить без исследования на животных с наследственными аномалиями, подобными тем, которые наблюдаются у человека. Согласно закону Μ. И. Вавилова, аналогичные наследственным болезням человека фенотипа имеют встречаться и у животных. Действительно, многие патологических состояний, выявленных у животных, могут быть моделями наследственных болезней человека. Так, у собак наблюдается гемофилия, которая сцеплена с полом. Альбинизм зарегистрирован во многих видов грызунов, кошек, собак, у ряда птиц. Для изучения мышечной дистрофии используются мыши, крупный рогатый скот, лошади, эпилепсии - кролики, крысы, мыши. Наследственная глухота существует в гвинейских свинок, мышей и собак. Недостатки строения лица человека, гомологичные "заячьей губе» и «волчьей пасти», наблюдаются в лицевом отделе черепа мышей, собак, свиней. Наследственными болезнями обмена, такими как ожирение и сахарный диабет, болеют мыши. Кроме уже известных мутаций путем воздействия мутагенных факторов можно получить в лабораторных животных много новых аномалий, подобных тем, которые встречаются у человека.

ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ

ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ открытый Н. И. Вавиловым (1920) закон, согласно которому изменчивость близких по происхождению родов и видов растений осуществляется общим (параллельным) путем. Генетически близкие роды и виды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других родственных видов и родов. Закон гомологических рядов, как и периодическая система элементов Д. И. Менделеева в химии, позволяет на основании знания общих закономерностей изменчивости предсказать существование в природе не известных ранее форм с ценными для селекции признаками. Многие такие формы были найдены после опубликования Н. И. Вавиловым закона гомологических рядов. Одним из наглядных примеров перспективности поиска таких форм и практического применения закона гомологических рядов является создание односемянных сортов сахарной свеклы. Более поздними исследованиями закон гомологических рядов был подтвержден у микроорганизмов и животных, у которых обнаружен параллелизм изменчивости морфологических и биохимических признаков.

Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .


  • ЗАКОН ГЛОГЕРА
  • ЗАКОН ДЕГРАДАЦИИ КАЧЕСТВА ЭНЕРГИИ

Смотреть что такое "ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ" в других словарях:

    закон гомологических рядов - homologinių eilių dėsnis statusas T sritis augalininkystė apibrėžtis Lygiagretaus organizmų kitimo dėsnis, pagal kurį genetiškai artimoms augalų rūšims, gentims ir šeimoms yra būdingos lygiagretės (homologinės) paveldimųjų požymių ir savybių… … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    закон гомологических рядов - биол. Закономерность, устанавливающая параллелизм в изменчивости родственных групп растений (открыт академиком Н. И.Вавиловым) … Словарь многих выражений

    Гомологические ряды в наследственной изменчивости понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений. Закономерности в… … Википедия

    См. Гомологических рядов в наследственной изменчивости закон. .(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.) …

    Изменчивости, разработанный советским учёным Н. И. Вавиловым закон, устанавливающий параллелизм в изменчивости организмов. Ещё Ч. Дарвин (1859 68) обратил внимание на далеко идущий параллелизм в изменчивости (См. Изменчивость) близких… … Большая советская энциклопедия

    Устанавливает параллелизм в наследств, изменчивости организмов. Сформулирован Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов злаков и др. семейств, Н. И. Вавилов обнаружил, что: 1. Виды и роды, генетически близкие между… … Биологический энциклопедический словарь

    В наследственной изменчивости сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение) и … Большой Энциклопедический словарь

    В наследственной изменчивости, сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение)… … Энциклопедический словарь

    Открытая рус. генетиком Н.И. Вавиловым в 1920 г. закономерность, устанавливающая параллелизм (сходство) в наследственной (генотипической) изменчивости у родственных организмов. В формулировке Вавилова закон гласит: «Виды и роды, генетически… … Биологический энциклопедический словарь

Книги

  • Закон гомологических рядов в наследственной изменчивости , Н. И. Вавилов. В книге впервые публикуются все три издания "Закона гомологических рядов в наследственной изменчивости", в том числе и английское 1922 г. Включены также работы, которые выходили только один…

4 июня он выступил с докладом «Закон гомологических рядов в наследственной изменчивости». Эта одна из тех работ, которые считаются фундаментальными и являются теоретической базой биологических исследований. Сущность закона сводится к тому, что виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Студенческое увлечение исследованием злаковых, а затем уже и крестоцветных, бобовых, тыквенных позволило Вавилову и уже его ученикам найти мутации, сходные у родственных видов, а далее и родов. В разработанной в результате опытов таблице знаком «+» Вавилов отметил мутации, проявление которых обнаружено у данных видов, а незаполненные места говорят, что подобные мутации должны быть, но еще не обнаружены. Таблица с пустыми клетками, которые при дальнейшем развитии науки будут заполняться. Где-то с подобным мы уже встречались?! Конечно, в химии, знаменитая таблица Менделеева! Закономерность двух законов подтверждена наукой. «Пустые» клетки заполняются, и это - база для практической селекции. Твердые пшеницы известны лишь в яровой форме, но на основе закона должна быть в природе и твердая пшеница озимой формы. Она действительно была вскоре обнаружена на границе Ирана и Турции. Тыквы и дыни характеризуются простыми и сегментированными плодами, однако арбуз такой формы во времена Вавилова не был описан. Но сегментированные арбузы были обнаружены на юго-востоке европейской части России. В культуре преобладает выращивание трехростковой свеклы, посевы которой требуют прополки и удаления двух лишних побегов. Но среди сородичей свеклы в природе были и одноростковые формы, поэтому ученые смогли создать новый сорт одноростковой свеклы. Безостость злаковых культур - мутация, которая оказалась полезной при введении машинной уборки урожая, когда механизмы менее засоряются. Селекционеры, используя вавиловский закон, нашли безостые формы и создали новые сорта безостых злаков. Факты параллельной изменчивости у близких и далеких видов были известны еще Ч. Дарвину. Например, одинаковая окраска шерсти грызунов, альбинизм у представителей разных групп животного мира и человека (описан случай альбинизма у негров), отсутствие оперения у птиц, отсутствие чешуи у рыб, сходная окраска плодов плодово-ягодных культур, изменчивость корнеплодов и т. д. Причина параллелизма в изменчивости заключается в том, что в основе гомологичных признаков лежит наличие сходных генов: чем генетически ближе виды и роды, тем полнее сходство в рядах изменчивости. Отсюда - причина гомологических мутаций - общность происхождения генотипов. Живая природа в процессе эволюции программировалась как бы по одной формуле, независимо от времени происхождения видов. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова явился не только подтверждением учения Дарвина о происхождении видов, но и расширил представление о наследственной изменчивости. Николаю Ивановичу вновь можно провозгласить: «Благодаря Дарвину!», но и «Продолжая Дарвина!» Вернемся в 1920 г. Интересны воспоминания очевидцев. Присутствовавшая на съезде Саратовского сельхозинститута (позднее кандидат биологических наук) Александра Ивановна Мордвинкина вспоминала: «Открылся съезд в самой большой аудитории университета. Ни один доклад впоследствии не производил на меня такого сильного впечатления, как выступление Николая Ивановича. Он говорил вдохновенно, все слушали с затаенным дыханием, чувствовалось, что перед нами открывается что-то очень большое, новое в науке. Когда раздались бурные, долго не смолкающие аплодисменты, профессор Вячеслав Рафаилович Зеленский сказал: «Это биологи приветствуют своего Менделеева». У меня в памяти особо запечатлелись слова Николая Максимовича Тулайкова: «Что можно добавить к этому докладу? Могу сказать одно: не погибнет Россия, если у нее есть такие сыны, как Николай Иванович». Николай Владимирович Тимофеев-Ресовский, превосходный генетик, знавший Вавилова не только по работам, но и лично, говорил доверительно близким знакомым: «Николай Иванович был чудесный человек и великомученик, прекрасный растениевод и собиратель, путешественник, отважнейший и всеобщий любимец, но его закон гомологических рядов - закон вовсе не гомологических, а аналогических рядов, да-с!» Что такое гомология? Это сходство на основе общего происхождения. Что такое аналогия? Сходство внешних признаков, которое определяется сходной средой обитания, но не родством. Так кто же прав? Вавилов! Можно лишь восхищаться глубиною его биологического ума! Изменение всего одного термина в названии меняет и сущность закона. По закону гомологических рядов все люди равны, потому что одного биологического происхождения, и принадлежат к виду гомо сапиенс, т. е. все одинаково умны, способны и талантливы и т. д., но имеют внешние различия: в росте, пропорциях между частями тела и т. д. По закону аналогических рядов люди внешне сходны, т. к. имеют сходную среду обитания, но разное происхождение. А это уже простор для шовинизма, расизма, национализма, вплоть до геноцида. И вавиловский закон говорит, что пигмей Африки и баскетболист Америки - одного генетического корня, и нельзя ставить одного над другим - это антинаучно! Справедливость открытой Вавиловым всеобщей биологической закономерности подтверждена современными изысканиями не только у растений, но и у животных. Современные генетики считают, что закон раскрывает необозримые перспективы научного познания, обобщения и предвидения» (профессор М. Е. Лобанов). К саратовскому периоду относится еще одна фундаментальная работа Н. И. Вавилова - «Иммунитет растений к инфекционным заболеваниям» (1919 г.). На титульном листе книги Николай Иванович написал: «Посвящается памяти великого исследователя иммунитета Ильи Ильича Мечникова». Ни один великий ученый не видит себя в науке стоящим особняком. Вот и Вавилов, благодаря Мечникову, задался вопросом, могут ли растения иметь защитные силы, если они есть у животных? В поисках ответа на вопрос он проводил исследования злаков по оригинальной методике и, обобщив практику и теорию, заложил основы новой науки - фитоиммунологии. Работа имела чисто практическое значение - использовать естественный иммунитет растений как наиболее рациональный и экономически выгодный способ борьбы с вредителями. Молодой ученый создал оригинальную теорию физиологической невосприимчивости растений к инфекционным заболеваниям, а основу учения составляли исследования генотипического иммунитета. Н. И. Вавилов изучал реакцию «хозяина» на внедрение паразита, специфичность этой реакции, и выяснял, является ли весь ряд иммунным, или только определенные виды этого ряда. Особое значение Николай Иванович придавал групповому иммунитету, считая, что в селекции важно выводить сорта, устойчивые не к одной расе, а к целой популяции физиологических рас, и искать такие устойчивые виды нужно на родине растения. Наука позже подтвердила, что дикие виды - сородичи культурных растений - имеют естественный иммунитет и в малой степени подвержены инфекционным заболеваниям. Именно внедрением генов устойчивости в растения занимаются современные селекционеры, используя теорию Н. И. Вавилова и методы генной инженерии. Разработкой вопросов иммунитета ученый интересовался на протяжении всей своей научной деятельности: «Учение об иммунитете растения к инфекционным заболеваниям» (1935 г.), «Законы естественного иммунитета растений к инфекционным заболеваниям (ключи к нахождению иммунных форм)» (опубликована лишь в 1961 г.). Академик Петр Михайлович Жуковский справедливо заметил: «В саратовский период, хотя он и был коротким (1917-1921), взошла звезда Н. И. Вавилова - ученого». Позже Вавилов напишет: «Из Саратова я перекочевал в марте 1921 г. со всей лабораторией в 27 человек». Он избран заведующим бюро по прикладной ботанике сельскохозяйственного ученого комитета в Петрограде. С 1921 по 1929 гг. - профессор кафедры генетики и селекции Ленинградского сельскохозяйственного института. В 1921 г. В. И. Ленин посылает на конференцию в Америку двух ученых, один из них - Н. И. Вавилов. Доклад о генетических исследованиях сделал его популярным среди ученых конференции. В Америке его выступления сопровождались овациями, подобными той, что была потом для Чкалова. «Если все русские такие, то нам нужно дружить с ними», - кричали американские газеты. В 20-30 гг. Н. И. Вавилов проявляет себя и как крупнейший организатор науки. Он был фактически создателем и бессменным руководителем Всесоюзного института растениеводства (ВИР). В 1929 г. создается Всесоюзная академия сельскохозяйственных наук (ВАСХНИЛ) на базе Всесоюзного института опытной агрономии, который ранее был организован Вавиловым. Он и был избран первым президентом (с 1929 по 1935 гг.). При непосредственном участии ученого был организован Институт генетики АН СССР. За короткий срок талант Вавилова создал научную школу генетиков, которая стала ведущей в мире. Все первоначальные работы в нашей стране в области генетики были выполнены им или под его руководством. В ВИРе впервые применен метод экспериментальной полиплоидии, и Г. Д. Карпеченко начал работы по ее использованию при отдаленной гибридизации. Вавилов настоял на начале работ по использованию явления гетерозиса и межлинейной гибридизации. Сегодня это - азбука селекции, а тогда было началом. За 30 лет научной деятельности опубликовано около 400 работ, статей! Феноменальная память, энциклопедические знания, владение почти двадцатью языками, в курсе всех новшеств в науке. Работал по 18-20 часов в сутки. Мама ругала его: «Тебе и поспать-то некогда...», - вспоминает сын Вавилова.



error: Контент защищен !!