Примеры пределов с решением тригонометрия. Первый замечательный предел: теория и примеры. Обратные тригонометрические функции

Первый замечательный предел выглядит следующим образом: lim x → 0 sin x x = 1 .

В практических примерах часто встречаются модификации первого замечательного предела: lim x → 0 sin k · x k · x = 1 , где k – некоторый коэффициент.

Поясним: lim x → 0 sin (k · x) k · x = п у с т ь t = k · x и з x → 0 с л е д у е т t → 0 = lim t → 0 sin (t) t = 1 .

Следствия первого замечательного предела:

  1. lim x → 0 x sin x = lim x → 0 = 1 sin x x = 1 1 = 1
  1. lim x → 0 k · x sin k · x = lim x → 0 1 sin (k · x) k · x = 1 1 = 1

Указанные следствия достаточно легко доказать, применив правило Лопиталя или замену бесконечно малых функций.

Рассмотрим некоторые задачи на нахождение предела по первому замечательному пределу; дадим подробное описание решения.

Пример 1

Необходимо определить предел, не используя правило Лопиталя: lim x → 0 sin (3 x) 2 x .

Решение

Подставим значение:

lim x → 0 sin (3 x) 2 x = 0 0

Мы видим, что возникла неопределенность нуль делить на нуль. Обратимся к таблице неопределенностей, чтобы задать метод решения. Сочетание синуса и его аргумента дает нам подсказку об использовании первого замечательного предела, однако для начала преобразуем выражение. Произведем умножение числителя и знаменателя дроби на 3 x и получим:

lim x → 0 sin (3 x) 2 x = 0 0 = lim x → 0 3 x · sin (3 x) 3 x · (2 x) = lim x → 0 sin (3 x) 3 x · 3 x 2 x = = lim x → 0 3 2 · sin (3 x) 3 x

Опираясь на следствие из первого замечательного предела, имеем: lim x → 0 sin (3 x) 3 x = 1 .

Тогда приходим к результату:

lim x → 0 3 2 · sin (3 x) 3 x = 3 2 · 1 = 3 2

Ответ: lim x → 0 sin (3 x) 3 x = 3 2 .

Пример 2

Необходимо найти предел lim x → 0 1 - cos (2 x) 3 x 2 .

Решение

Подставим значения и получим:

lim x → 0 1 - cos (2 x) 3 x 2 = 1 - cos (2 · 0) 3 · 0 2 = 1 - 1 0 = 0 0

Мы видим неопределенность нуль делить на нуль. Произведем преобразование числителя с использованием формул тригонометрии:

lim x → 0 1 - cos (2 x) 3 x 2 = 0 0 = lim x → 0 2 sin 2 (x) 3 x 2

Видим, что теперь здесь возможно применение первого замечательного предела:

lim x → 0 2 sin 2 (x) 3 x 2 = lim x → 0 2 3 · sin x x · sin x x = 2 3 · 1 · 1 = 2 3

Ответ: lim x → 0 1 - cos (2 x) 3 x 2 = 2 3 .

Пример 3

Необходимо произвести вычисление предела lim x → 0 a r c sin (4 x) 3 x .

Решение

Подставим значение:

lim x → 0 a r c sin (4 x) 3 x = a r c sin (4 · 0) 3 · 0 = 0 0

Мы видим неопределенность делить нуль на нуль. Произведем замену:

a r c sin (4 x) = t ⇒ sin (a r c sin (4 x)) = sin (t) 4 x = sin (t) ⇒ x = 1 4 sin (t) lim x → 0 (a r c sin (4 x)) = a r c sin (4 · 0) = 0 , значит t → 0 при x → 0 .

В таком случае, после замены переменной, предел принимает вид:

lim x → 0 a r c sin (4 x) 3 x = 0 0 = lim t → 0 t 3 · 1 4 sin (t) = = lim t → 0 4 3 · t sin t = 4 3 · 1 = 4 3

Ответ: lim x → 0 a r c sin (4 x) 3 x = 4 3 .

Для более полного понимания материала статьи следует повторить материал темы «Пределы, основные определения, примеры нахождения, задачи и решения».

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение непрерывности функции в точке и передела функции на бесконечности и на использовании свойств предела непрерывной функции способствует непосредственному вычислению пределов.

Определение 1

Значение предела в точке непрерывности определено значением функции в этой точке.

При опоре на свойства основные элементарные функции имеют предел в любой точке из области определения, вычисляется как значение соответствующей функции в этих точках.

Пример 1

Произвести вычисление предела функции lim x → 5 a r c t g 3 5 · x

Решение

Функция арктангенса отличается непрерывностью на всей своей области определения. Отсюда получим, что в точке x 0 = 5 функция является непрерывной. Из определения имеем, что для нахождения предела является значением этой же функции. Тогда необходимо произвести подстановку. Получим, что

lim x → 5 a r c t g 3 5 · x = a r c t g 3 5 · 5 = a r c t g 3 = π 3

Ответ: π 3 .

Для вычисления односторонних пределов необходимо использовать значения точек границ предела. У акрксинуса и акрккосинуса имеются такие значения x 0 = - 1 или x 0 = 1 .

При x → + ∞ или x → - ∞ вычисляются пределы функции, заданные на бесконечностях.

Для упрощения выражений применяют свойства пределов:

Определение 2

  1. lim x → x 0 (k · f (x)) = k · lim x → x 0 f (x) , k является коэффициентом.
  2. lim x → x 0 (f (x) · g (x)) = lim x → x 0 f (x) · lim x → x 0 g (x) , применяемое при получении неопределенности предела.
  3. lim x → x 0 (f (g (x))) = f lim x → x 0 g x ,используемое для непрерывных функций, где знак функции и предельного перехода можно менять местами.

Для того, чтобы научиться вычислять переделы, необходимо знать и разбираться в основных элементарных функциях. Ниже приведена таблица, в которой имеются переделы этих функций с приведенными разъяснениями и подробным решением. Для вычисления необходимо основываться на определении предела функции в точке и на бесконечности.

Таблица пределов функции

Для упрощения и решения пределов используется данная таблица основных пределов.

Функция корень n-ой степени

y = x n , где n = 2 , 4 , 6 . . .

lim x → ∞ x n = + ∞ n = + ∞

Для любых x 0 из опрелеления

lim x → x 0 x n = x 0 n

Функция корень n-ой степени

y = x n , где n = 3 , 5 , 7 . . .

lim x → ∞ x n = + ∞ n = + ∞ lim x → ∞ x n = - ∞ n = - ∞

lim x → x 0 x n = x 0 n

Степенная функция y = x a , a > 0

  1. Для любого положительного числа a
    lim x → ∞ x a = + ∞ a = + ∞
  2. Если a = 2 , 4 , 6 . . . , то
    lim x → ∞ x a = - ∞ a = + ∞
  3. Если a = 1 , 3 , 5 , . . . , то
    lim x → ∞ x a = - ∞ a = - ∞
  4. Для любых x 0 , из области определния
    lim x → x 0 x a = (x 0) a

Степенная функция y = x a , a < 0

  1. Для любого отрицательного числа a
    lim x → ∞ x a = (+ ∞) a = + 0 lim x → 0 + 0 = (0 + 0) a = + ∞
  2. Если a = - 2 , - 4 , - 4 , . . . , то
    lim x → ∞ x a = - ∞ a = + 0 lim x → 0 - 0 x a = (0 - 0) a = + ∞
  3. Если a = - 1 , - 3 , - 5 , . . . , то
    lim x → ∞ x a = - ∞ a = - 0 lim x → 0 - 0 x a = (0 - 0) a = - ∞
  4. Для любых x 0 из области определения
    lim x → x 0 x a = (x 0) a

Показательная функия

y = a x , 0 < a < 1

lim x → ∞ a x = a - ∞ = + ∞ lim x → ∞ a x = a + ∞ = + 0

Для любых x 0 из области опреления lim x → x 0 a x = a x 0

Показательная функия

y = a x , a > 1 lim x → ∞ a x = a - ∞ = + 0 lim x → x 0 a x = a + ∞ = + ∞

Для любых знвчений x 0 из област опредения lim x → x 0 a x = a x 0

Логарифмическая функция

y = log a (x) , 0 < a < 1

lim x → 0 + 0 log a x = log a (0 + 0) = + ∞ lim x → ∞ log a x = log a (+ ∞) = - ∞

Lim x → x 0 log a x = log a x 0

Логарифмическая функция

y = log a (x) , a > 1

lim x → 0 + 0 log a x = log a (0 + 0) = - ∞ lim x → ∞ log a x = log a (+ ∞) = + ∞

Для любых x 0 из области опрелеления

lim x → x 0 log a x = log a x 0

Тригонометрические функции

  • Синус
    lim x → ∞ sin x не существует

    lim x → x 0 sin x = sin x 0
  • Тангненс lim x → π 2 - 0 + π · k t g x = t g π 2 - 0 + π · k = + ∞ lim x → π 2 + 0 + π · k t g x = t g π 2 + 0 + π · k = - ∞

lim x → ∞ t g x не существует

Для любых x 0 из области опрелеления

lim x → x 0 t g x = t g x 0

Тригонометрические функции

  • Косинус
    lim x → ∞ cos x не существует
    Для любых x 0 из области опрелеления
    lim x → x 0 cos x = cos x 0
  • Котангенс lim x → - 0 + π · k c t g x = c t g (- 0 + π · k) = - ∞ lim x → + 0 + π · k ctg x = ctg (+ 0 + π · k) = + ∞

lim x → ∞ c t g x не существует

Для любых x 0 из области опрелеления
lim x → x 0 с t g x = с t g x 0

  • Арксинус
    lim x → - 1 + 0 a r c sin x = - π 2 lim x → 1 - 0 a r c sin x = π 2

Для любых x 0 из области опрелеления

lim x → x 0 a r c sin x = a r c sin x 0

  • Арккосинус
    lim x → - 1 + 0 a r c cos (x) = π lim x → 1 - 0 arccos (x) = 0

Для любых x 0 из области опрелеления

lim x → x 0 a r c c i s x = a r c cos x 0

Обратные тригонометрические функции

  • Арктангес
    lim x → - ∞ a r c t g (x) = - π 2 lim x → + ∞ a r c t g (x) = π 2

Для любых x 0 из области опрелеления

lim x → x 0 a r c t g x = a r c t g x 0

  • Арккотангенс
    lim x → - ∞ a r c c t g (x) = π lim x → + ∞ a r c c t g (x) = 0

Для любых x 0 из области опрелеления

lim x → x 0 a r c c t g x = a r c c t g x 0

Пример 2

Произвести вычисление предела lim x → 1 x 3 + 3 x - 1 x 5 + 3 .

Решение

Для решения необходимо подставить значение х = 1 . Получаем, что

lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 1 3 + 3 · 1 - 1 1 5 + 3 = 3 4 = 3 2

Ответ: lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 3 2

Пример 3

Произвести вычисление предела функции lim x → 0 (x 2 + 2 , 5) 1 x 2

Решение

Для того, чтобы раскрыть предел, необходимо подставить значение х, к которому стремится предел функции. В данном случае нужно произвести подстановку х = 0 . Подставляем числовое значение и получаем:

x 2 + 2 . 5 x = 0 = 0 2 + 2 . 5 = 2 . 5

Предел записывается в виде lim x → 0 (x 2 + 2 . 5) 1 x 2 = lim x → 0 2 . 5 1 x 2 . Далее необходимо заняться значением показателя. Он является степенной функцией 1 x 2 = x - 2 . В таблице пределов, предоставленной выше, имеем, что lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞ и lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞ , значит, имеем право записать как lim x → 0 1 x 2 = lim x → 0 x - 2 = + ∞

Теперь вычислим предел. Получит вид lim x → 0 (x 2 + 2 . 5) 1 x 2 = lim x → 0 2 . 5 1 x 2 = 2 . 5 + ∞

По таблице пределов с показательными функциями, имеющими основание больше 1 получаем, что

lim x → 0 (x 2 + 2 . 5) 1 x 2 = lim x → 0 2 . 5 1 x 2 2 . 5 + ∞ = + ∞

Ответ: lim x → 0 (x 2 + 2 . 5) 1 x 2 = + ∞

Когда задан более сложный предел, то при помощи таблицы не всегда получится получать целое или конкретное значение. Чаще получаются разные виды неопределенностей, для разрешения которых необходимо применять правила.

Рассмотрим графическое разъяснение приведенной выше таблицы пределов основных элементарных функций.

Из рисунка видно, что функция у = С имеет предел на бесконечности. Такой же предел при аргументе, который стремится к х 0 . Он равняется числу C .


Четные показатели корня применимы для lim x → + ∞ x n = + ∞ n = + ∞ , а нечетные, равные больше, чем значение 1 , – для lim x → + ∞ x n = + ∞ n = + ∞ , lim x → - ∞ x n = - ∞ n = - ∞ . Область определения может принимать абсолютно любое значение х предела заданной функции корня n -ой степени, равного значению функции в заданной точке.

Необходимо разделить все степенные функции по группам, где имеются одинаковые значения пределов, исходя из показателя степени.

  1. Когда a является положительным числом, тогда lim x → + ∞ x a = + ∞ a = + ∞ и lim x → - ∞ x a = - ∞ a = - ∞ . Когда x принимает любое значение, тогда предел степенной функции равняется значению функции в точке. Иначе это записывается как lim x → ∞ x a = (∞) a = ∞ .

  1. Когда a является положительным четным числом, тогда получаем lim x → + ∞ x a = (+ ∞) a = + ∞ и lim x → - ∞ x a = (- ∞) a = + ∞ , причем x из данной области определения является пределом степенной функции и равняется значением функции в этой точке. Предел имеет вид lim x → ∞ x a = ∞ a = + ∞ .

  1. Когда a имеет другие значения, тогда lim x → + ∞ x a = (+ ∞) a = + ∞ , а область определения x способствует определению предела функции в заданной точке.

  1. Когда a имеет значение отрицательных чисел, тогда получаем lim x → + ∞ x a = + ∞ a = + 0 , lim x → - ∞ x a = (- ∞) a = - 0 , lim x → 0 - 0 x a = (0 - 0) a = - ∞ , lim x → 0 + 0 x a = 0 + 0 a = + ∞ , а значения x может быть любым из заданной области определения и равняется функции в заданной точке. Получаем, что lim x → ∞ x a = ∞ a = 0 и lim x → 0 x a = 0 a = ∞ .

  1. Когда a является отрицательным четным числом, тогда получаем lim x → + ∞ x a = (+ ∞) a = + 0 , lim x → - ∞ x a = - ∞ a = + 0 , lim x → 0 - 0 (0 - 0) a = + ∞ , lim x → 0 + 0 x a = (0 + 0) a = + ∞ , а любое значение x на области определения дает результат предела степенной функции равным значению функции в точке. Запишем как lim x → ∞ x a = (∞) a = + 0 и lim x → 0 x a = (0) a = + ∞ .

  1. Когда значение a имеет другие действительные отрицательные числа, тогда получим lim x → + ∞ x a = + ∞ a = + 0 и lim x → 0 + 0 x a = 0 + 0 a = + ∞ , когда x принимает любое значение из своей области определения, тогда предел степенной функции равняется значению функции в этой точке.

Когда 0 < a < 1 , имеем, что lim x → - ∞ a x = a - ∞ = + ∞ , lim x → + ∞ a x = (a) + ∞ = + ∞ , любое значение x из области определения дает пределу показательной функции значению функции в точке.

Когда a > 1 , тогда lim x → - ∞ a x = (a) - ∞ = + 0 , lim x → + ∞ a x = (a) + ∞ = + ∞ , а любое значение x из области определения дает предел функции равный значению этой функции в точке.

Когда имеем 0 < a < 1 , тогда lim x → 0 + 0 log a x = log a (0 + 0) = + ∞ , lim x → + ∞ log a x = log a (+ ∞) = - ∞ , для всех остальных значений x из заданной области определения предел показательной функции равняется значению заданной функции в точках.

Когда a > 1 , получаем lim x → 0 + 0 log a x = log a (0 + 0) = - ∞ , lim x → + ∞ log a x = log a (+ ∞) = + ∞ ,остальные значения x в заданной области определения дают решение предела показательной функции равному ее значению в точках.

Предел бесконечности не существует для таких функций как y = sin x , y = cos x . Любое значение x , входящее в область определения, равняется значению функции в точке.

Функция тангенса имеет предел вида lim x → π 2 - 0 + π · k t g (x) = + ∞ , lim x → π 2 + π · k t g (x) = ∞ или lim x → π 2 + π · k t g (x) = ∞ , тогда остальные значения x , принадлежащие области определения тангенса, равняется значению функции в этих точках.

Для функции y = c t g x получаем lim x → - 0 + π · k c t g (x) = - ∞ , lim x → + 0 + π · k c t g (x) = + ∞ или lim x → π · k c t g (x) = ∞ , тогда остальные значения x , принадлежащие области определения, дают предел котангенса, равный значению функции в этих точках.

Функция арксинус имеет предел вида lim x → - 1 + 0 a r c sin (x) = - π 2 и lim x → 1 - 0 a r c sin (x) = π 2 , остальные значения x из области определения равняются значению функции в заданной точке.

Функция арккосинус имеет предел вида lim x → - 1 + 0 a r c cos (x) = π и lim x → 1 - 0 a r c cos (x) = 0 , когда остальные значения x , принадлежащие области определения, имеют предел арккосинуса, равного значению функции в этой точке.

Функция арктангенс имеет предел вида lim x → - ∞ a r c t g (x) = - π 2 и lim x → + ∞ a r c t g (x) = π 2 , причем другие значения x , входящие в область определения, равняется значению функции в имеющихся точках.

Функция котангенса имеет предел вида lim x → - ∞ a r c c t g (x) = π и lim x → + ∞ a r c t g (x) = 0 , где x принимает любое значение из своей заданной области определения, где получаем предел арккотангенса, равного значению функции в имеющихся точках.

Все имеющееся значения пределов применяются в решении для нахождения предела любой из элементарных функций.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы: Замечательные пределы и Тригонометрические формулы . Их можно найти на странице . Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходится мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел , Второй замечательный предел . Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Первый замечательный предел

Рассмотрим следующий предел: (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений ) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

Данный математический факт носит название Первого замечательного предела . Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях .

Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:

– тот же самый первый замечательный предел.

Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра может выступать не только переменная , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю .

Примеры:
, , ,

Здесь , , , , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому что многочлен не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел и получить лёгкий зачет. Хммм… Пишу эти строки, и пришла в голову очень важная мысль – все-таки «халявные» математические определения и формулы вроде лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Пример 1

Найти предел

Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.

Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):

Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе .

В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить ».
А делается это очень просто:

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:


Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:

Теперь только осталось избавиться от трехэтажности дроби:

Кто позабыл упрощение многоэтажных дробей, пожалуйста, освежите материал в справочнике Горячие формулы школьного курса математики .

Готово. Окончательный ответ:

Если не хочется использовать пометки карандашом, то решение можно оформить так:



Используем первый замечательный предел

Пример 2

Найти предел

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:

Действительно, у нас неопределенность и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):

Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:

Собственно, ответ готов:

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.

Пример 3

Найти предел

Подставляем ноль в выражение под знаком предела:

Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле (кстати, с котангенсом делают примерно то же самое, см. методический материал Горячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы ).

В данном случае:

Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):

Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.

Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:

В итоге получена бесконечность, бывает и такое.

Пример 4

Найти предел

Пробуем подставить ноль в числитель и знаменатель:

Получена неопределенность (косинус нуля, как мы помним, равен единице)

Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.

Постоянные множители вынесем за значок предела:

Организуем первый замечательный предел:


Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:

Избавимся от трехэтажности:

Предел фактически решен, указываем, что оставшийся синус стремится к нулю:

Пример 5

Найти предел

Этот пример сложнее, попробуйте разобраться самостоятельно:

Некоторые пределы можно свести к 1-му замечательному пределу путём замены переменной, об этом можно прочитать чуть позже в статье Методы решения пределов .

Второй замечательный предел

В теории математического анализа доказано, что:

Данный факт носит название второго замечательного предела .

Справка: – это иррациональное число.

В качестве параметра может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности .

Пример 6

Найти предел

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение , по какому принципу это делается, разобрано на уроке Пределы. Примеры решений .

Нетрудно заметить, что при основание степени , а показатель – , то есть имеется, неопределенность вида :

Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень :

Когда задание оформляется от руки, карандашом помечаем:


Практически всё готово, страшная степень превратилась в симпатичную букву :

При этом сам значок предела перемещаем в показатель :

Пример 7

Найти предел

Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела:

В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать .

Первый замечательный предел часто применяется для вычисления пределов содержащих синус, арксинус, тангенс, арктангенс и получающихся при них неопределенностей ноль делить на ноль.

Формула

Формула первого замечательного предела имеет вид: $$ \lim_{\alpha\to 0} \frac{\sin\alpha}{\alpha} = 1 $$

Замечаем, что при $ \alpha\to 0 $ получается $ \sin\alpha \to 0 $, тем самым в числетеле и в знаменателе имеем нули. Таким образом формула первого замечательного предела нужна для раскрытия неопределенностей $ \frac{0}{0} $.

Для применения формулы необходимо, чтобы были соблюдены два условия:

  1. Выражения, содержащиеся в синусе и знаменателе дроби совпадают
  2. Выражения, стоящие в синусе и знаменателе дроби стремятся к нулю

Внимание! $ \lim_{x\to 0} \frac{\sin(2x^2+1)}{2x^2+1} \neq 1 $ Хотя выражения под синусом и в знаменателе одинаковые, однако $ 2x^2+1 = 1 $, при $ x\to 0 $. Не выполнено второе условие, поэтому применять формулу НЕЛЬЗЯ!

Следствия

Достаточно редко в задания можно увидеть чистый первый замечательный предел, в котором можно сразу было бы записать ответ. На практике всё немного сложнее выглядит, но для таких случаев будет полезно знать следствия первого замечательного предела. Благодаря им можно быстро вычислить нужные пределы.

$$ \lim_{\alpha\to 0} \frac{\alpha}{\sin\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{\sin(a\alpha)}{\sin(b\alpha)} = \frac{a}{b} $$

$$ \lim_{\alpha\to 0} \frac{tg\alpha}{\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{\arcsin\alpha}{\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{arctg\alpha}{\alpha} = 1 $$

Примеры решений

Рассмотрим первый замечательный предел, примеры решения которого на вычисление пределов содержащих тригонометрические функции и неопределенность $ \bigg[\frac{0}{0}\bigg] $

Пример 1
Вычислить $ \lim_{x\to 0} \frac{\sin2x}{4x} $
Решение

Рассмотрим предел и заметим, что в нём присутствует синус. Далее подставим $ x = 0 $ в числитель и знаменатель и получим неопределенность нуль делить на нуль: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \frac{0}{0} $$ Уже два признака того, что нужно применять замечательный предел, но есть небольшой нюанс: сразу применить формулу мы не сможем, так как выражение под знаком синуса отличается от выражения стоящего в знаменателе. А нам нужно, чтобы они были равны. Поэтому с помощью элементарных преобразований числителя мы превратим его в $ 2x $. Для этого мы вынесем двойку из знаменателя дроби отдельным множителем. Выглядит это так: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \lim_{x\to 0} \frac{\sin2x}{2\cdot 2x} = $$ $$ = \frac{1}{2} \lim_{x\to 0} \frac{\sin2x}{2x} = \frac{1}{2}\cdot 1 = \frac{1}{2} $$ Обратите внимание, что в конце $ \lim_{x\to 0} \frac{\sin2x}{2x} = 1 $ получилось по формуле.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to 0} \frac{\sin2x}{4x} =\frac{1}{2} $$
Пример 2
Найти $ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} $
Решение

Как всегда сначала нужно узнать тип неопределенности. Если она нуль делить на нуль, то обращаем внимание на наличие синуса: $$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = \frac{0}{0} = $$ Данная неопределенность позволяет воспользоваться формулой первого замечательного предела, но выражение из знаменателя не равно аргументу синуса? Поэтом "в лоб" применить формулу нельзя. Необходимо умножить и разделить дробь на аргумент синуса: $$ = \lim_{x\to 0} \frac{(x^3+2x)\sin(x^3+2x)}{(2x-x^4)(x^3+2x)} = $$ Теперь по свойствам пределов расписываем: $$ = \lim_{x\to 0} \frac{(x^3+2x)}{2x-x^4}\cdot \lim_{x\to 0} \frac{\sin(x^3+2x)}{(x^3+2x)} = $$ Второй предел как раз подходит под формулу и равен единице: $$ = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4}\cdot 1 = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4} = $$ Снова подставляем $ x = 0 $ в дробь и получаем неопределенность $ \frac{0}{0} $. Для её устранения достоточно вынести за скобки $ x $ и сократить на него: $$ = \lim_{x\to 0} \frac{x(x^2+2)}{x(2-x^3)} = \lim_{x\to 0} \frac{x^2+2}{2-x^3} = $$ $$ = \frac{0^2 + 2}{2 - 0^3} = \frac{2}{2} = 1 $$

Ответ
$$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = 1 $$
Пример 4
Вычислить $ \lim_{x\to0} \frac{\sin2x}{tg3x} $
Решение

Вычисление начнём с подстановки $ x=0 $. В результате получаем неопределенность $ \frac{0}{0} $. Предел содержит синус и тангенс, что намекает на возможное развитие ситуации с использованием формулы первого замечательного предела. Преобразуем числитель и знаменатель дроби под формулу и следствие:

$$ \lim_{x\to0} \frac{\sin2x}{tg3x} = \frac{0}{0} = \lim_{x\to0} \frac{\frac{\sin2x}{2x}\cdot 2x}{\frac{tg3x}{3x}\cdot 3x} = $$

Теперь видим в числителе и знаменателе появились выражения подходящие под формулу и следствия. Аргумент синуса и аргумент тангенса совпадают для соответствующих знаменателей

$$ = \lim_{x\to0} \frac{1\cdot 2x}{1\cdot 3x} = \frac{2}{3} $$

Ответ
$$ \lim_{x\to0} \frac{\sin2x}{tg2x} = \frac{2}{3} $$

В статье: "Первый замечательный предел, примеры решения" было рассказано о случаях, в которых целесообразно использовать данную формулу и её следствия.

Замечательных пределов существует несколько, но самыми известными являются первый и второй замечательные пределы. Замечательность этих пределов состоит в том, что они имеют широкое применение и с их помощью можно найти и другие пределы, встречающиеся в многочисленных задачах. Этим мы и будем заниматься в практической части данного урока. Для решения задач путём приведения к первому или второму замечательному пределу не нужно раскрывать содержащиеся в них неопределённости, поскольку значения этих пределов уже давно вывели великие математики.

Первым замечательным пределом называется предел отношения синуса бесконечно малой дуги к той же дуге, выраженной в радианной мере:

Переходим к решению задач на первый замечательный предел. Заметим: если под знаком предела находится тригонометрическая функция, это почти верный признак того, что это выражение можно привести к первому замечательнному пределу.

Пример 1. Найти предел .

Решение. Подстановка вместо x нуля приводит к неопределённости:

.

В знаменателе - синус, следовательно, выражение можно привести к первому замечательному пределу. Начинаем преобразования:

.

В знаменателе - синус трёх икс, а в числителе всего лишь один икс, значит, нужно получить три икс и в числителе. Для чего? Чтобы представить 3x = a и получить выражение .

И приходим к разновидности первого замечательного предела:

потому что неважно, какая буква (переменная) в этой формуле стоит вместо икса.

Умножаем икс на три и тут же делим:

.

В соответствии с замеченным первым замечательным пределом производим замену дробного выражения:

Теперь можем окончательно решить данный предел:

.

Пример 2. Найти предел .

Решение. Непосредственная подстановка вновь приводит к неопределённости "нуль делить на нуль":

.

Чтобы получить первый замечательный предел, нужно, чтобы икс под знаком синуса в числителе и просто икс в знаменателе были с одним и тем же коэффициентом. Пусть этот коэффициент будет равен 2. Для этого представим нынешний коэффициент при иксе как и далее, производя действия с дробями, получаем:

.

Пример 3. Найти предел .

Решение. При подстановке вновь получаем неопределённость "нуль делить на нуль":

.

Наверное, вам уже понятно, что из исходного выражения можно получить первый замечательный предел, умноженный на первый замечательный предел. Для этого раскладываем квадраты икса в числителе и синуса в знаменателе на одинаковые множители, а чтобы получить у иксов и у синуса одинаковые коэффициенты, иксы в числителе делим на 3 и тут же умножаем на 3. Получаем:

.

Пример 4. Найти предел .

Решение. Вновь получаем неопределённость "нуль делить на нуль":

.

Можем получить отношение двух первых замечательных пределов. Делим и числитель, и знаменатель на икс. Затем, чтобы коэффициенты при синусах и при иксах совпадали, верхний икс умножаем на 2 и тут же делим на 2, а нижний икс умножаем на 3 и тут же делим на 3. Получаем:

Пример 5. Найти предел .

Решение. И вновь неопределённость "нуль делить на нуль":

Помним из тригонометрии, что тангенс - это отношение синуса к косинусу, а косинус нуля равен единице. Производим преобразования и получаем:

.

Пример 6. Найти предел .

Решение. Тригонометрическая функция под знаком предела вновь наталкивает на мысль о применении первого замечательного предела. Представляем его как отношение синуса к косинусу.



error: Контент защищен !!