Работа с линиями вероятности и выбор плана будущего в собственной Искре. Практика. Независимые события и правило умножения

Для построения дерева вероятностей прежде всего необходимо нарисовать са­мо дерево, затем записать на рисунке всю известную для данной задачи инфор­мацию и, наконец, воспользоваться основными правилами, чтобы вычислить не­достающие числа и закончить дерево.

1. Вероятности указываются в каждой из конечных точек и обводятся кружоч­ками. На каждом уровне дерева сумма этих вероятностей должна равняться 1 (или 100%). Так, например, на рис. 6.5.1 сумма вероятностей на первом уров­не составляет 0,20 + 0,80 = 1,00 и на втором уровне - 0,03 + 0,17 + 0,56 + 0,24 = 1,00. Это правило помогает заполнить один пустой кружок в столбце, если значения всех остальных вероятностей этого уровня известны.

Рис. 6.5.1

2. Условные вероятности указываются рядом с каждой из ветвей (кроме,
возможно, ветвей первого уровня). Для каждой из групп ветвей, выходящих из одной точки, сумма этих вероятностей также равна 1 (или 100%).
Например, на рис. 6.5.1 для первой группы ветвей получаем 0,15 + 0,85 =
1,00 и для второй группы - 0,70 + 0,30 = 1,00. Это правило позволяет
вычислить одно неизвестное значение условной вероятности в группе вет­вей, исходящих из одной точки.

3. Обведенная кругом в начале ветви вероятность, умноженная на условную
вероятность рядом с этой ветвью, дает вероятность, записанную в круге в
конце ветви. Например, на рис. 6.5.1 для верхней ведущей вправо ветви
имеем 0,20 х 0,15 = 0,03, для следующей ветви - 0,20 х 0,85 = 0,17; аналогичные соотношения выполняются и для других двух ветвей. Это правило можно использовать для вычисления одного неизвестного значения
вероятности из трех, соответствующих некоторой ветви.

4. Записанное в круге значение вероятности равно сумме обведенных кружками вероятностей на концах всех ветвей, выходящих из этого круга
вправо. Так, например, для рис. 6.5.1 из круга со значением 0,20 выходят
две ветви, на концах которых находятся обведенные кружками вероятности, сумма которых равна этому значению: 0,03 + 0,17 = 0,20. Это правило позволяет найти одно неизвестное значение вероятности в группе,
включающей эту вероятность и все вероятности на концах ветвей дерева,
выходящих из соответствующего круга.

Используя эти правила можно, зная все, кроме одного значения вероятности для некоторой ветви или на некотором уровне, находить это неизвестное значение.

37. Какая выборка называется репрезентативной? Каким образом можно извлечь репрезентативную выборку?

Репрезентативность - это способность выборки представлять изучаемую совокупность. Чем точнее состав выборки представляет совокупность по изучаемым вопросам, тем выше ее репрезентативность.



Репрезентативная выборка (representative sample) - одно из ключевых понятий анализа данных. Репрезентативная выборка - это выборка из генеральной совокупности с распределением F (x ), представляющая основные особенности генеральной совокупности. Например, если в городе проживает 100 000 человек, половина из которых мужчины и половина женщины, то выборка 1000 человек из которых 10 мужчин и 990 женщин, конечно, не будет репрезентативной. Построенный на ее основе опрос общественного мнения, конечно, будет содержать смещение оценок и приводит к фальсификации результатов.

Необходимым условием построения репрезентативной выборки является равная вероятность включения в нее каждого элемента генеральной совокупности.

Выборочная (эмпирическая) функция распределения дает при большом объеме выборки достаточно хорошее представление о функции распределения F (x ) исходной генеральной совокупности.

Ведущий принцип, лежащий в основе такой процедуры, - это принцип рандомизации, случайности. Выборка называется случайной (иногда мы будем говорить простая случайная или чистая случайная выборка), если выполняется два условия. Во-первых, выборка должна быть построена таким образом, чтобы любой человек или объект в пределах совокупности имел равные возможности быть отобранным для анализа. Во-вторых, выборка должна быть сформирована так, чтобы любое сочетание из n объектов (где n - просто количество объектов, или случаев, в выборке) имело равные возможности быть отобранным для анализа.

При исследовании совокупностей, которые слишком велики, для того чтобы можно было осуществить настоящую лотерею, часто используются простые случайные выборки. Выписать имена нескольких сотен тысяч объектов, сложить их в барабан и выбрать несколько тысяч - это все же нелегкая работа. В таких случаях используется другой, однако столь же надежный способ. Каждому объекту в совокупности присваивается номер. Последовательность чисел в таких таблицах обычно задается компьютерной программой, называемой генератором случайных чисел, который, в сущности, помещает в барабан большое количество чисел, случайным образом вытаскивает их и выпечатывает в порядке получения. Иными словами, имеет место все тот же процесс, характерный для лотереи, однако компьютер, используя не имена, а числа, осуществляет универсальный выбор. Этим выбором можно пользоваться, просто присвоив каждому из наших объектов номер.

Таблица случайных чисел типа той, может использоваться несколькими разными способами, и в каждом случае необходимо принять три Решения. Во-первых, следует решить, сколько разрядов Мы будем использовать, во-вторых, необходимо разработать решающее правило для их использования; в-третьих нужно выбрать исходную точку и способ прохождения по таблице.

Как только это сделано, мы должны разработать правило, которое бы связывало числа в таблице с номерами наших объектов. Здесь существуют две возможности. Самый простой способ (хотя и не обязательно самый правильный) - использовать лишь те числа, которые попадают в число номеров, приписанных нашим объектам. Так, если мы имеем совокупность, состоящую из 250 объектов (и, таким образом, используем трехзначные числа), и решаем начать с левого верхнего угла таблицы и двигаться вниз по столбцам, мы включим в нашу выборку объекты с номерами 100, 084 и 128 и пропустим числа 375 и 990, не соответствующие нашим объектам. Этот процесс будет продолжаться до тех пор, пока не будет определено число объектов, нужных для нашей выборки.

Более трудоемкая, однако методически более правильная процедура основывается на положении, что для сохранения случайности, характерной для таблицы, должно быть использовано каждое число данной размерности (например, каждое трехзначное число). Следуя данной логике и вновь имея дело с совокупностью из 250 объектов, мы должны разбить область трехзначных чисел от 000 до 999 на 250 одинаковых промежутков. Поскольку таких чисел 1000, мы делим 1000 на 250 и находим, что каждая из частей содержит четыре числа. Таким образом, числа таблицы от 000 до 003 будут соответствовать объекту от 004 до 007 - объекту 2 и т.д. Теперь, чтобы установить, какой номер объекта соответствует числу таблицы, следует разделить трехзначное число из таблицы и округлить до ближайшего целого числа.

И наконец, мы должны выбрать в таблице исходную точку и способ прохождения. Исходной точкой может быть верхний левый угол (как в предыдущем примере), нижний правый угол, левый край второй строки или любое другое место. Этот выбор абсолютно произволен. Однако, работая с таблицей, мы должны действовать систематически. Мы могли бы взять три первых знака из каждой пятизначной последовательности, три средних знака, три последних знака или даже первый, второй и четвертый знаки. (Из первой пятизначной последовательности с помощью этих различных процедур получаются, соответственно, числа 100, 009, 097 и 109.) Мы могли бы применить эти процедуры в направлении справа налево, получив 790, 900, 001 и 791. Мы могли бы идти вдоль рядов, рассматривая поочередно каждую следующую цифру и игнорируя разбиение на пятерки (для первого ряда будут получены числа 100, 973, 253, 376 и 520). Мы могли бы иметь дело лишь с каждой третьей группой цифр (например, с 10097, 99019, 04805, 99970). Существует множество самых разнообразных возможностей, и каждая следующая ничуть не хуже предыдущей. Однако как только мы приняли решение о том, или ином способе работы, мы должны систематически следовать ему, чтобы в максимальной степени соблюдать случайность элементов в таблице.

38. Какой интервал мы называем доверительным?

Доверительный интервал - это допустимое отклонение наблюдаемых значений от истинных. Размер этого допущения определяется исследователем с учетом требований к точности информации. Если увеличивается допустимая ошибка, размер выборки уменьшается, даже если уровень доверительной вероятности останется равным 95%.

Доверительный интервал показывает, в каком диапазоне расположатся результаты выборочных наблюдений (опросов). Если мы проведем 100 одинаковых опросов в одинаковых выборках из единой генеральной совокупности (например, 100 выборок по 1000 человек в каждой в городе с населением 5 миллионов человек), то при 95%-й доверительной вероятности, 95 из 100 результатов попадут в пределы доверительного интервала (например, от 28% до 32% при истинном значении 30%).

Например, истинное количество курящих жителей города составляет 30%. Если мы 100 раз подряд выберем по 1000 человек и в этих выборках зададим вопрос "курите ли Вы?", в 95 из этих 100 выборок при 2%-м доверительном интервале значение составит от 28% до 32%.

39 Что называется уровнем доверительности (confidence level)?

Доверительный уровень отражает количество данных, необходимых оценщику для того, чтобы утверждать, что обследуемая программа имеет должный эффект. В общественных науках традиционно используется 95% доверительный уровень. Однако для большинства общественных программ уровень в 95% является излишним. Доверительный уровень в интервале 80-90% является достаточным для адекватной оценки программы. Таким образом, можно уменьшить размер репрезентативной группы, тем самым уменьшив и затраты на проведение оценки.

В процессе статистической оценки проверяется нулевая гипотеза, которая состоит в том, что программа не имела должного эффекта. Если полученные результаты значительно отличаются от изначальных предположений о правильности нулевой гипотезы, то последняя отклоняется.

40. Какой из двух доверительных интервалов больше: двусторонний 99% или двусторонний 95%? Объясните.

Двусторонний доверительный интервал 99% больше, чем 95%, так как в него попадает больше значений. Док-во:

С помощью z-значений можно точнее оценить доверительный интервал и определить общую форму доверительного интервала. Точная формулировка доверительного интервала для выборочного среднего имеет следующий вид:

Таким образом, для случайной выборки 25 наблюдений, удовлетворяющих нормальному распределению, с доверительный интервал выборочного среднего имеет следующий вид:

Таким образом, на 95% можно быть уверенным, что значение лежит в пределах ±1,568 единицы от выборочного среднего. С помощью такого же метода можно определить, что 99%-ный доверительный интервал лежит в пределах ±2,0608 единицы от выборочного среднего

значение Таким образом, имеем и отсюда , Аналогично получаем нижний предел, который равен

Споры и гипотезы о существовании неизвестных нам планет-двойников, параллельных вселенных и даже галактик насчитывают уже многие десятилетия. Все они основываются на теории вероятности без привлечения представлений современной физики. В последние годы к ним добавилось еще представление о существовании сверхвселенной, основанное на проверенных теориях - квантовой механике и теории относительности. "Полит.ру" публикует статью Макса Тегмарка "Параллельные вселенные", в которой выдвигается гипотеза о строении предполагаемой сверхвселенной, теоретически включающей в себя четыре уровня. Однако уже в ближайшее десятилетие у ученых может появиться реальная возможность получить новые данные о свойствах космического простраства и, соответственно, подтвердить или опровергнуть данную гипотезу. Статья опубликована в журнале "В мире науки" (2003. № 8).

Эволюция снабдила нас интуицией в отношении повседневной физики, жизненно важной для наших далеких предков; поэтому, как только мы выходим за рамки повседневности, мы вполне можем ожидать странностей.

Простейшая и самая популярная космологическая модель предсказывает, что у нас есть двойник в галактике, удаленной на расстояние порядка 10 в степени 1028 метров. Расстояние столь велико, что находится за пределами досягаемости астрономических наблюдений, но это не делает нашего двойника менее реальным. Предположение основано на теории вероятности без привлечения представлений современной физики. Принимается лишь допущение, что пространство бесконечно и заполнено материей. Может существовать множество обитаемых планет, в том числе таких, где живут люди с такой же внешностью, такими же именами и воспоминаниями, прошедшие те же жизненные перипетии, что и мы.

Но нам никогда не будет дано увидеть наши иные жизни. Самое далекое расстояние, на которое мы способны заглянуть, это то, которое может пройти свет за 14 млрд. лет, протекших с момента Большого взрыва. Расстояние между самыми далекими от нас видимыми объектами составляет около 431026 м; оно и определяет доступную для наблюдения область Вселенной, называемую объемом Хаббла, или объемом космического горизонта, или просто Вселенной. Вселенные наших двойников представляют собой сферы таких же размеров с центрами на их планетах. Это самый простой пример параллельных вселенных, каждая из которых является лишь малой частью сверхвселенной.

Само определение «вселенная» наводит на мысль, что оно навсегда останется в области метафизики. Однако граница между физикой и метафизикой определяется возможностью экспериментальной проверки теорий, а не существованием неподдающихся наблюдениям объектов. Границы физики постоянно расширяются, включая все более отвлеченные (и бывшие до того метафизическими) представления, например, о шаровидной Земле, невидимых электромагнитных полях, замедлении времени при больших скоростях, суперпозиции квантовых состояний, искривлении пространства и черных дырах. В последние годы к этому перечню добавилось и представление о сверхвселенной. Оно основано на проверенных теориях – квантовой механике и теории относительности – и отвечает обоим основным критериям эмпирической науки: позволяет делать прогнозы и может быть опровергнуто. Ученые рассматривают четыре типа параллельных вселенных. Главный вопрос не в том, существует ли сверхвселенная, а сколько уровней она может иметь.

Уровень I

За нашим космическим горизонтом

Параллельные вселенные наших двойников составляют первый уровень сверхвселенной. Это наименее спорный тип. Мы все признаем существование вещей, которых мы не видим, но могли бы увидеть, переместившись в другое место или просто подождав, как ждем появления корабля из-за горизонта. Подобный статус имеют объекты, находящиеся за пределами нашего космического горизонта. Размер доступной наблюдению области Вселенной ежегодно увеличивается на один световой год, поскольку нас достигает свет, исходящий из все более далеких областей, за которыми скрывается бесконечность, которую еще предстоит увидеть. Мы, вероятно, умрем задолго до того, как наши двойники окажутся в пределах досягаемости для наблюдений, но если расширение Вселенной поможет, наши потомки смогут увидеть их в достаточно мощные телескопы.

Уровень I сверхвселенной представляется до банальности очевидным. Как может пространство не быть бесконечным? Разве есть где-нибудь знак «Берегись! Конец пространства»? Если существует конец пространства, то что находится за ним? Однако теория гравитации Эйнштейна поставила это интуитивное представление под сомнение. Пространство может быть конечным, если оно имеет положительную кривизну или необычную топологию. Сферическая, тороидальная или «кренделевидная» вселенная может иметь конечный объем, не имея границ. Фоновое космическое микроволновое излучение позволяет проверить существование подобных структур. Однако до сих пор факты говорят против них. Данным соответствует модель бесконечной вселенной, а на все прочие варианты наложены строгие ограничения.

Другой вариант таков: пространство бесконечно, но материя сосредоточена в ограниченной области вокруг нас. В одном из вариантов некогда популярной модели «островной Вселенной» принимается, что на больших масштабах вещество разрежается и имеет фрактальную структуру. В обоих случаях почти все вселенные в сверхвселенной уровня I должны быть пусты и безжизненны. Последние исследования трехмерного распределения галактик и фонового (реликтового) излучения показали, что распределение вещества стремится к однородному в больших масштабах и не образует структур размером более 1024 м. Если такая тенденция сохраняется, то пространство за пределами наблюдаемой Вселенной должно изобиловать галактиками, звездами и планетами.

Для наблюдателей в параллельных вселенных первого уровня действуют те же законы физики, что и для нас, но при иных стартовых условиях. Согласно современным теориям, процессы, протекавшие на начальных этапах Большого взрыва, беспорядочно разбросали вещество, так что была вероятность возникновения любых структур.

Космологи принимают, что наша Вселенная с почти однородным распределением вещества и начальными флуктуациями плотности порядка 1/105 весьма типична (по крайней мере, среди тех, в которых есть наблюдатели). Оценки на основе этого допущения показывают, что ваша ближайшая точная копия находится на расстоянии 10 в степени 1028 м. На расстоянии 10 в степени 1092 м должна располагаться сфера радиусом 100 световых лет, идентичная той, в центре которой находимся мы; так что все, что в следующем веке увидим мы, увидят и находящиеся там наши двойники. На расстоянии около 10 в степени 10118 м от нас должен существовать объем Хаббла, идентичный нашему. Эти оценки выведены путем подсчета возможного числа квантовых состояний, которые может иметь объем Хаббла, если его температура не превышает 108 К. Число состояний можно оценить, задавшись вопросом: сколько протонов способен вместить объем Хаббла с такой температурой? Ответ – 10118. Однако каждый протон может либо присутствовать, либо отсутствовать, что дает 2 в степени 10118 возможных конфигураций. «Короб», содержащий такое количество объемов Хаббла, охватывает все возможности. Размер его составляет 10 в степени 10118 м. За его пределами вселенные, включая нашу, должны повторяться. Примерно те же цифры можно получить на основе термодинамических или квантовогравитационных оценок общего информационного содержания Вселенной.

Впрочем, наш ближайший двойник скорее всего находится к нам ближе, чем дают эти оценки, поскольку процесс формирования планет и эволюция жизни благоприятствуют этому. Астрономы полагают, что наш объем Хаббла содержит по крайней мере 1020 пригодных для жизни планет, некоторые из которых могут быть похожи на Землю.

В современной космологии понятие сверхвселенной уровня I широко применяется для проверки теории. Рассмотрим, как используют космологи реликтовое излучение для того, чтобы отвергнуть модель конечной сферической геометрии. Горячие и холодные «пятна» на картах реликтового излучения имеют характерный размер, зависящий от кривизны пространства. Так вот, размер наблюдаемых пятен слишком мал, чтобы согласоваться со сферической геометрией. Их средний размер случайным образом меняется от одного объема Хаббла к другому, поэтому не исключено, что наша Вселенная сферическая, но имеет аномально малые пятна. Когда космологи говорят, что они исключают сферическую модель на доверительном уровне 99,9%, они имеют в виду, что если модель верна, то меньше чем один объем Хаббла из тысячи будет характеризоваться столь малыми пятнами, как наблюдаемые. Из этого следует, что теория сверхвселенной поддается проверке и может быть отвергнута, хотя мы и не в состоянии видеть иные вселенные. Главное – предсказать, что представляет собой ансамбль параллельных вселенных, и найти распределение вероятностей или то, что математики называют мерой ансамбля. Наша Вселенная должна быть одной из наиболее вероятных. Если же нет, если в рамках теории сверхвселенной наша Вселенная окажется маловероятной, то эта теория столкнется с трудностями. Как мы увидим далее, проблема меры может стать весьма острой.

Уровень II

Другие постинфляционные домены

Если вам трудно было представить сверхвселенную уровня I, то попытайтесь вообразить бесконечное множество таких сверхвселенных, часть которых имеет иную размерность пространства-времени и характеризуется иными физическими константами. В совокупности они составляют сверхвселенную уровня II, предсказанную теорией хаотической вечной инфляции.

Теория инфляции – это обобщение теории Большого взрыва, позволяющее устранить недочеты последней, например, неспособность объяснить, почему Вселенная столь велика, однородна и плоска. Быстрое растяжение пространства в давние времена позволяет объяснить эти и многие другие свойства Вселенной. Такое растяжение предсказывается широким классом теорий элементарных частиц, и все имеющиеся свидетельства подтверждают его. Выражение «хаотическая вечная» по отношению к инфляции указывает на то, что происходит в самых крупных масштабах. В целом пространство постоянно растягивается, но в некоторых областях расширение прекращается, и возникают отдельные домены, как изюминки в поднимающемся тесте. Появляется бесконечное множество таких доменов, и каждый из них служит зародышем сверхвселенной уровня I, заполненной веществом, рожденным энергией поля, вызывающего инфляцию.

Соседние домены удалены от нас более чем на бесконечность, в том смысле, что их невозможно достичь, даже если вечно двигаться со скоростью света, поскольку пространство между нашим доменом и соседними растягивается быстрее, чем можно перемещаться в нем. Наши потомки никогда не увидят своих двойников на уровне II. А если расширение Вселенной ускоряется, как о том свидетельствуют наблюдения, то они никогда не увидят своих двойников даже на уровне I.

Сверхвселенная уровня II гораздо разнообразнее сверхвселенной уровня I. Домены различаются не только начальными условиями, но и своими фундаментальными свойствами. У физиков преобладает мнение, что размерность пространства-времени, свойства элементарных частиц и многие так называемые физические константы не встроены в физические законы, а являются результатом процессов, известных как нарушение симметрии. Предполагают, что пространство в нашей Вселенной некогда имело девять равноправных измерений. В начале космической истории три из них приняли участие в расширении и стали теми тремя измерениями, которые характеризуют сегодняшнюю Вселенную. Шесть остальных сейчас невозможно обнаружить либо потому, что они остались микроскопическими, сохранив тороидальную топологию, либо потому, что вся материя сосредоточена в трехмерной поверхности (мембране, или просто бране) в девятимерном пространстве. Так была нарушена исходная симметрия измерений. Квантовые флуктуации, обусловливающие хаотическую инфляцию, могли вызвать различные нарушения симметрии в разных кавернах. Одни могли стать четырехмерными; другие – содержать только два, а не три поколения кварков; а третьи – иметь более сильную космологическую постоянную, чем наша Вселенная.

Другой путь возникновения сверхвселенной уровня II можно представить как цикл рождений и разрушений вселенных. В 1930-е гг. физик Ричард Толмен (Richard C. Tolman) высказал эту идею, а недавно Пол Стейнхардт (Paul J. Steinhardt) из Принстонского университета и Нил Тьюрок (Neil Turok) из Кембриджского университета развили ее. Модель Стейнхардта и Тьюрока предусматривает вторую трехмерную брану, совершенно параллельную нашей и лишь смещенную относительно нее в измерении более высокого порядка. Эту параллельную вселенную нельзя считать отдельной, поскольку она взаимодействует с нашей. Однако ансамбль вселенных – прошлых, нынешних и будущих, который эти браны образуют, представляет собой сверхвселенную с разнообразием, по-видимому, близким к возникающему в результате хаотической инфляции. Еще одну гипотезу сверхвселенной предложил физик Ли Смолин (Lee Smolin) из Института Периметра в г. Ватерлоо (пров. Онтарио, Канада). Его сверхвселенная по разнообразию близка к уровню II, но она мутирует и порождает новые вселенные посредством черных дыр, а не бран.

Хотя мы и не можем взаимодействовать с параллельными вселенными уровня II, космологи судят об их существовании по косвенным признакам, поскольку они могут быть причиной странных совпадений в нашей Вселенной. Например, в гостинице вам предоставляют номер 1967, и вы отмечаете, что родились в 1967 г. «Какое совпадение», – говорите вы. Однако, подумав, приходите к выводу, что это не так уж и удивительно. В гостинице сотни номеров, и вам не пришло бы в голову задумываться о чем-либо, если бы предложили номер, ничего для вас не значащий. Если бы вы ничего не знали о гостиницах, то для объяснения этого совпадения вы могли бы предположить, что в гостинице существуют и другие номера.

В качестве более близкого примера рассмотрим массу Солнца. Как известно, светимость звезды определяется ее массой. С помощью законов физики мы можем вычислить, что жизнь на Земле может существовать лишь при условии, что масса Солнца лежит в пределах: от 1,6х1030 до 2,4х1030 кг. В противном случае климат Земли был бы холоднее, чем на Марсе, или жарче, чем на Венере. Измерения массы Солнца дали значение 2,0х1030 кг. На первый взгляд, попадание массы Солнца в интервал значений, обеспечивающий жизнь на Земле, является случайным.

Массы звезд занимают диапазон от 1029 до 1032 кг; если бы Солнце приобрело свою массу случайно, то шанс попасть именно в оптимальный для нашей биосферы интервал был бы крайне мал.

Кажущееся совпадение можно объяснить, предположив существование ансамбля (в данном случае – множества планетных систем) и фактора отбора (наша планета должна быть пригодной для жизни). Такие критерии отбора, связанные с наблюдателем, называют антропными; и хотя упоминание о них обычно вызывает полемику, все же большинство физиков согласно, что пренебрегать этими критериями при отборе фундаментальных теорий нельзя.

А какое отношение все эти примеры имеют к параллельным вселенным? Оказывается, небольшое изменение физических констант, определяемых нарушением симметрии, приводит к качественно иной вселенной – такой, в которой мы бы не могли существовать. Будь масса протона больше всего на 0,2%, протоны распадались бы с образованием нейтронов, делая атомы нестабильными. Будь силы электромагнитного взаимодействия слабее на 4%, не существовало бы водорода и обычных звезд. Будь слабое взаимодействие еще слабее, не было бы водорода; а будь оно сильнее, сверхновые не могли бы заполнять межзвездное пространство тяжелыми элементами. Будь космологическая постоянная заметно больше, Вселенная невероятно раздулась бы еще до того, как смогли образоваться галактики.

Приведенные примеры позволяют ожидать существование параллельных вселенных с иными значениями физических констант. Теория сверхвселенной второго уровня предсказывает, что физики никогда не смогут вывести значения этих констант из фундаментальных принципов, а смогут лишь рассчитывать распределение вероятностей различных наборов констант в совокупности всех вселенных. При этом результат должен согласоваться с нашим существованием в одной из них.

Уровень III

Квантовое множество вселенных

Сверхвселенные уровней I и II содержат параллельные вселенные, чрезвычайно удаленные от нас за пределы возможностей астрономии. Однако следующий уровень сверхвселенной лежит прямо вокруг нас. Он возникает из знаменитой и весьма спорной интерпретации квантовой механики – идеи о том, что случайные квантовые процессы заставляют вселенную «размножаться», образуя множество своих копий – по одной для каждого возможного результата процесса.

В начале ХХ в. квантовая механика объяснила природу атомного мира, который не подчинялся законам классической ньютоновской механики. Несмотря на очевидные успехи, среди физиков шли жаркие споры о том, в чем же истинный смысл новой теории. Она определяет состояние Вселенной не в таких понятиях классической механики, как положения и скорости всех частиц, а через математический объект, называемый волновой функцией. Согласно уравнению Шрёдингера, это состояние изменяется с течением времени таким образом, который математики определяют термином «унитарный». Он означает, что волновая функция вращается в абстрактном бесконечномерном пространстве, называемом гильбертовым. Хотя квантовую механику часто определяют как принципиально случайную и неопределенную, волновая функция эволюционирует вполне детерминистским образом. В отношении нее нет ничего случайного или неопределенного.

Самое трудное – связать волновую функцию с тем, что мы наблюдаем. Многие допустимые волновые функции соответствуют противоестественным ситуациям вроде той, когда кошка одновременно и мертва, и жива в виде так называемой суперпозиции. В 20-е гг. XX в. физики обошли эту странность, постулировав, что волновая функция коллапсирует к некоторому определенному классическому исходу, когда кто-либо осуществляет наблюдение. Это дополнение позволило объяснить результаты наблюдений, но превратило изящную унитарную теорию в неряшливую и не унитарную. Принципиальная случайность, приписываемая обычно квантовой механике, является следствием именно этого постулата.

Со временем физики отказались от этой точки зрения в пользу другой, предложенной в 1957 г. выпускником Принстонского университета Хью Эвереттом (Hugh Everett III). Он показал, что можно обойтись и без постулата о коллапсе. Чистая квантовая теория не налагает никаких ограничений. Хотя она и предсказывает, что одна классическая реальность постепенно расщепляется на суперпозицию нескольких таких реальностей, наблюдатель субъективно воспринимает это расщепление просто как небольшую хаотичность с распределением вероятностей, в точности совпадающим с тем, которое давал старый постулат коллапса. Эта суперпозиция классических вселенных и есть сверхвселенная уровня III.

Более сорока лет такая интерпретация смущала ученых. Однако физическую теорию легче понять, сравнивая две точки зрения: внешнюю, с позиции физика, изучающего математические уравнения (подобно птице, оглядывающей пейзаж с высоты своего полета); и внутреннюю, с позиции наблюдателя (назовем его лягушкой), живущего на ландшафте, обозреваемом птицей.

С точки зрения птицы, сверхвселенная уровня III является простой. Существует всего одна волновая функция, которая плавно эволюционирует во времени без расщепления и параллелизма. Абстрактный квантовый мир, описываемый эволюционирующей волновой функцией, содержит в себе огромное количество непрерывно расщепляющихся и сливающихся линий параллельных классических историй, а также ряд квантовых явлений, не поддающихся описанию в рамках классических представлений. Но с точки зрения лягушки, можно видеть только малую часть этой реальности. Она может видеть вселенную уровня I, однако процесс нарушения когерентности, подобный коллапсу волновой функции, но с сохранением унитарности, не позволяет ей видеть параллельные копии самой себя на уровне III.

Когда наблюдателю задают вопрос, на который он должен быстро дать ответ, квантовый эффект в его мозге приводит к суперпозиции решений вроде такой: «продолжать читать статью» и «бросить читать статью». С точки зрения птицы, акт принятия решения заставляет человека размножиться на копии, одни из которых продолжают читать, а другие прекращают чтение. Однако с внутренней точки зрения, ни один из двойников не знает о существовании других и воспринимает расщепление просто как небольшую неопределенность, некоторую вероятность продолжения или прекращения чтения.

Сколь бы странным это ни казалось, но точно такая же ситуация возникает даже в супервселенной уровня I. Очевидно, вы решили продолжать чтение, но кто-то из ваших двойников в далекой галактике отложил журнал после первого же абзаца. Уровни I и III различаются только тем, где находятся ваши двойники. На уровне I они живут где-то далеко, в добром старом трехмерном пространстве, а на уровне III – на другой квантовой ветви бесконечномерного гильбертова пространства.

Существование уровня III возможно лишь при условии, что эволюция волновой функции во времени унитарна. До сих пор эксперименты не выявили ее отклонений от унитарности. В последние десятилетия ее подтверждали для всех более крупных систем, включая фуллерен С60 и оптические волокна километровой длины. В теоретическом плане положение об унитарности было подкреплено открытием нарушения когерентности. Некоторые теоретики, работающие в области квантовой гравитации, ставят ее под сомнение. В частности, предполагается, что испаряющиеся черные дыры могут разрушать информацию, а это не унитарный процесс. Однако недавние достижения в теории струн позволяют считать, что даже квантовое тяготение является унитарным.

Если это так, то черные дыры не разрушают информацию, а просто передают ее куда-то. Если физика унитарна, стандартная картина влияния квантовых флуктуаций на начальных этапах Большого взрыва должна быть изменена. Эти флуктуации не случайным образом определяют суперпозицию всех возможных начальных условий, которые сосуществуют одновременно. При этом нарушение когерентности заставляет начальные условия вести себя классическим образом на различных квантовых ветвях. Ключевое положение гласит: распределение исходов на разных квантовых ветвях одного объема Хаббла (уровень III) идентично распределению исходов в разных объемах Хаббла одной квантовой ветви (уровень I). Это свойство квантовых флуктуаций известно в статистической механике как эргодичность.

Эти же рассуждения применимы к уровню II. Процесс нарушения симметрии приводит не к однозначному исходу, а к суперпозиции всех исходов, которые быстро расходятся по своим отдельным путям. Таким образом, если физические константы, размерность пространства-времени и проч. могут различаться в параллельных квантовых ветвях на уровне III, то они будут так же различаться в параллельных вселенных на уровне II.

Иными словами, сверхвселенная уровня III не добавляет ничего нового к тому, что имеется на уровнях I и II, лишь большее число копий тех же самых вселенных – такие же исторические линии развиваются снова и снова на разных квантовых ветвях. Горячие споры вокруг теории Эверетта, похоже, скоро утихнут в результате открытия столь же грандиозных, но менее спорных сверхвселенных уровней I и II.

Приложения этих идей глубоки. Например, такой вопрос: происходит ли экспоненциальное увеличение числа вселенных со временем? Ответ неожиданный: нет. С точки зрения птицы, существует только одна квантовая вселенная. А каково число отдельных вселенных в данный момент для лягушки? Это число заметно различающихся объемов Хаббла. Различия могут быть невелики: представьте себе планеты, движущиеся в иных направлениях, вообразите себя с кем-то другим в браке и т.д. На квантовом уровне существуют 10 в степени 10118 вселенных с температурой не выше 108 К. Число гигантское, но конечное.

Для лягушки эволюция волновой функции соответствует бесконечному движению от одного из этих 10 в степени 10118 состояний к другому. Сейчас вы находитесь во вселенной А, где и читаете это предложение. А теперь вы уже во вселенной В, где читаете следующее предложение. Иначе говоря, в В есть наблюдатель, идентичный наблюдателю во вселенной А, с той лишь разницей, что у него есть лишние воспоминания. В каждый момент существуют все возможные состояния, так что течение времени может происходить перед глазами наблюдателя. Эту мысль выразил в своем научно-фантастическом романе «Город перестановок» (1994 г.) писатель Грег Иган (Greg Egan) и развили физик Дэвид Дойч (David Deutsch) из Оксфордского университета, независимый физик Джулиан Барбу (Julian Barbour) и др. Как видим, идея сверхвселенной может играть ключевую роль в понимании природы времени.

Уровень IV

Другие математические структуры

Начальные условия и физические константы в сверхвселенных уровней I, II и III могут различаться, но фундаментальные законы физики одинаковы. Почему мы на этом остановились? Почему не могут различаться сами физические законы? Как насчет вселенной, подчиняющейся классическим законам без каких-либо релятивистских эффектов? Как насчет времени, движущегося дискретными шагами, как в компьютере?

А как насчет вселенной в виде пустого додекаэдра? В сверхвселенной уровня IV все эти альтернативы действительно существуют.

О том, что такая сверхвселенная не является абсурдной, свидетельствует соответствие мира отвлеченных рассуждений нашему реальному миру. Уравнения и другие математические понятия и структуры – числа, векторы, геометрические объекты – описывают реальность с удивительным правдоподобием. И наоборот, мы воспринимаем математические структуры как реальные. Да они и отвечают фундаментальному критерию реальности: одинаковы для всех, кто их изучает. Теорема будет верна независимо от того, кто ее доказал – человек, компьютер или интеллектуальный дельфин. Другие любознательные цивилизации найдут те же математические структуры, какие знаем мы. Поэтому математики говорят, что они не создают, а открывают математические объекты.

Существуют две логичные, но диаметрально противоположные парадигмы соотношения математики и физики, возникшие еще в древние времена. Согласно парадигме Аристотеля, физическая реальность первична, а математический язык является лишь удобным приближением. В рамках парадигмы Платона, истинно реальны именно математические структуры, а наблюдатели воспринимают их несовершенно. Иными словами, эти парадигмы различаются пониманием того, что первично – лягушачья точка зрения наблюдателя (парадигма Аристотеля) или птичий взгляд с высоты законов физики (точка зрения Платона).

Парадигма Аристотеля – это то, как мы воспринимали мир с раннего детства, задолго то того, как впервые услышали о математике. Точка зрения Платона – это приобретенное знание. Современные физики-теоретики склоняются к ней, предполагая, что математика хорошо описывает Вселенную именно потому, что Вселенная математична по своей природе. Тогда вся физика сводится к решению математической задачи, и безгранично умный математик может лишь на основе фундаментальных законов рассчитать картину мира на уровне лягушки, т.е. вычислить, какие наблюдатели существуют во Вселенной, что они воспринимают и какие языки они изобрели для передачи своего восприятия.

Математическая структура – абстракция, неизменная сущность вне времени и пространства. Если бы история была кинофильмом, то математическая структура соответствовала не одному кадру, а фильму в целом. Возьмем для примера мир, состоящий из частиц нулевых размеров, распределенных в трехмерном пространстве. С точки зрения птицы, в четырехмерном пространстве-времени траектории частиц представляют собой «спагетти». Если лягушка видит частицы движущимися с постоянными скоростями, то птица видит пучок прямых, не сваренных «спагетти». Если лягушка видит две частицы, обращающиеся по орбитам, то птица видит две «спагеттины», свитые в двойную спираль. Для лягушки мир описывают законы движения и тяготения Ньютона, для птицы – геометрия «спагетти», т.е. математическая структура. Сама лягушка для нее – толстый их клубок, сложное переплетение которых соответствует группе частиц, хранящих и перерабатывающих информацию. Наш мир сложнее рассмотренного примера, и ученые не знают, какой из математических структур он соответствует.

В парадигме Платона заключен вопрос: почему наш мир таков, каков он есть? Для Аристотеля это бессмысленный вопрос: мир есть, и он таков! Но последователи Платона интересуются: а мог бы наш мир быть иным? Если Вселенная математична по сути, то почему в ее основе лежит только одна из множества математических структур? Похоже, что фундаментальная асимметрия заключена в самой сути природы.Чтобы разгадать головоломку, я выдвинул предположение, что математическая симметрия существует: что все математические структуры реализуются физически, и каждая из них соответствует параллельной вселенной. Элементы этой сверхвселенной не находятся в одном и том же пространстве, но существуют вне времени и пространства. В большинстве из них, вероятно, нет наблюдателей. Гипотезу можно рассматривать как крайний платонизм, утверждающий, что математические структуры платоновского мира идей, или «умственного пейзажа» математика Руди Ракера (Rudy Rucker) из Университета Сан-Хосе, существуют в физическом смысле. Это сродни тому, что космолог Джон Барроу (John D. Barrow) из Кембриджского университета называл «p в небесах», философ Роберт Нозик (Robert Nozick) из Гарвардского университета описывал как «принцип плодовитости», а философ Дэвид Льюис (David K. Lewis) из Принстонского университета именовал «модальной реальностью». Уровень IV замыкает иерархию сверхвселенных, поскольку любая самосогласованная физическая теория может быть выражена в форме некой математической структуры.

Гипотеза о сверхвселенной уровня IV позволяет сделать несколько поддающихся проверке предсказаний. Как и на уровне II, она включает ансамбль (в данном случае – совокупность всех математических структур) и эффекты отбора. Занимаясь классификацией математических структур, ученые должны заметить, что структура, описывающая наш мир, является наиболее общей из тех, что согласуются с наблюдениями. Поэтому результаты наших будущих наблюдений должны стать наиболее общими из числа тех, которые согласуются с данными прежних исследований, а данные прежних исследований – самыми общими из тех, что вообще совместимы с нашим существованием.

Оценить степень общности – непростая задача. Одна из поразительных и обнадеживающих черт математических структур состоит в том, что свойства симметрии и инвариантности, обеспечивающие простоту и упорядоченность нашей Вселенной, как правило, являются общими. Математические структуры обычно обладают этими свойствами по умолчанию, и для избавления от них требуется введение сложных аксиом.

Что говорил Оккам?

Таким образом, теории параллельных вселенных имеют четырехуровневую иерархию, где на каждом следующем уровне вселенные все менее напоминают нашу. Они могут характеризоваться различными начальными условиями (уровень I), физическими константами и частицами (уровень II) или физическими законами (уровень IV). Забавно, что наибольшей критике в последние десятилетия подвергался уровень III как единственный, не вводящий качественно новых типов вселенных. В грядущем десятилетии детальные измерения реликтового излучения и крупномасштабного распределения вещества во Вселенной позволят точнее определить кривизну и топологию пространства и подтвердить или опровергнуть существование уровня I. Эти же данные позволят получить сведения об уровне II путем проверки теории хаотической вечной инфляции. Успехи астрофизики и физики частиц высоких энергий помогут уточнить степень тонкой настройки физических констант, подкрепив или ослабив позиции уровня II. Если усилия по созданию квантового компьютера будут успешными, появится дополнительный довод в пользу существования уровня III, поскольку для параллельных вычислений будет использоваться параллелизм этого уровня. Экспериментаторы ищут также свидетельства нарушения унитарности, которые позволят отвергнуть гипотезу о существовании уровня III. Наконец, успех или провал попытки решить главнейшую задачу современной физики – объединить общую теорию относительности с квантовой теорией поля – даст ответ на вопрос об уровне IV. Либо будет найдена математическая структура, точно описывающая нашу Вселенную, либо мы наткнемся на предел невероятной эффективности математики и будем вынуждены отказаться от гипотезы об уровне IV.

Итак, можно ли верить в параллельные вселенные? Основные доводы против их существования сводятся к тому, что это слишком расточительно и непостижимо. Первый аргумент состоит в том, что теории сверхвселенной уязвимы для «бритвы Оккама», поскольку они постулируют существование других вселенных, которые мы никогда не увидим. Зачем природе быть столь расточительной и «развлекаться» созданием бесконечного числа различных миров? Однако этот аргумент можно обратить в пользу существования сверхвселенной. В чем именно расточительна природа? Разумеется, не в пространстве, массе или количестве атомов: их бесконечно много уже содержится на уровне I, существование которого не вызывает сомнений, так что нет смысла беспокоиться, что природа потратит их еще сколько-то. Реальный вопрос состоит в кажущемся уменьшении простоты. Скептиков беспокоит дополнительная информация, необходимая для описания невидимых миров.

Однако весь ансамбль часто бывает проще каждого из своих членов. Информационный объем алгоритма числа есть, грубо говоря, выраженная в битах длина самой короткой компьютерной программы, генерирующей это число. Возьмем для примера множество всех целых чисел. Что проще – все множество или отдельное число? На первый взгляд – второе. Однако первое можно построить с помощью очень простой программы, а отдельное число может быть чрезвычайно длинным. Поэтому все множество оказывается проще.

Аналогично, множество всех решений уравнений Эйнштейна для поля проще каждого конкретного решения – первое состоит всего из нескольких уравнений, а второе требует задания огромного количества начальных данных на некой гиперповерхности. Итак, сложность возрастает, когда мы сосредоточиваем внимание на отдельном элементе ансамбля, теряя симметрию и простоту, свойственные совокупности всех элементов.

В этом смысле сверхвселенные более высоких уровней проще. Переход от нашей Вселенной к сверхвселенной уровня I исключает необходимость задавать начальные условия. Дальнейший переход к уровню II устраняет необходимость задавать физические константы, а на уровне IV вообще ничего задавать не нужно. Чрезмерная сложность – это лишь субъективное восприятие, точка зрения лягушки. А с позиции птицы, эта сверхвселенная едва ли может быть еще проще. Жалобы на непостижимость имеют эстетическую, а не научную природу и оправданы лишь при аристотелевском мировосприятии. Когда мы задаем вопрос о природе реальности, не следует ли нам ожидать ответа, который может показаться странным?

Общее свойство всех четырех уровней сверхвселенной состоит в том, что простейшая и, по-видимому, самая изящная теория по умолчанию включает в себя параллельные вселенные. Чтобы отвергнуть их существование, нужно усложнить теорию, добавив не подтверждаемые экспериментом процессы и придуманные для этого постулаты – о конечности пространства, коллапсе волновой функции и онтологической асимметрии. Наш выбор сводится к тому, что считать более расточительным и неизящным – множество слов или множество вселенных. Возможно, со временем мы привыкнем к причудам нашего космоса и сочтем его странность очаровательной.


К интересным выводам в ходе исследования свойств времени и возможности путешествий в прошлое и будущее пришел кандидат технических наук В.Чернобров. Так, в частности, он пишет:

«Настоящее есть переход, превращение многовариантного, легко изменяемого Будущего в одновариантное и неизменное Прошлое. Отсюда следует, что полеты в Прошлое (при «отрицательной» плотности-скорости t/tо) и в Будущее будут происходить по-разному.

В какой-то степени их можно сравнить с перемещениями муравья по дереву: из любой точки дерева (из Настоящего) для муравья открывается всего 1 путь вниз (в Прошлое) и множество путей вверх (в Будущее).

Однако среди всех путей в Будущее несомненно существуют наиболее вероятные варианты, маловероятные и почти невероятные. Движение в Будущее будет тем более нестабильным и энергоемким, чем менее вероятным окажется данный вариант Будущего.

В соответствии с данным «законом кроны дерева», возвращение в Настоящее возможно только в том случае, если при пребывании в Прошлом путешествующий не вмешивается в происходящее вокруг него и не изменяет ход прошедшей Истории; в противном случае хронопутешественник вернется в параллельное Настоящее из Прошлого по другой ветви Истории.

Проникновение в Будущее из Настоящего затруднено выбором ветви перемещения, но возвращение из любого варианта Будущего в Настоящее возможно при любом сценарии поведения. Если перед вами не окажется слияний разных вариантов Истории».

Таким образом, даже современные научные исследования подтверждают многомерность времени и разновариантность будущего, а также возможность перемещений в различные его вероятности.

Существует гипотеза, согласно которой ключевые моменты судьбы каждого человека, так называемые «развилки» вероятностей, порождают различные «ветви» реальности в зависимости от наших поступков.

Все эти «ветви» существуют во Вселенной одновременно. Но человеку доступно существование только на одной такой «ветви», хотя иногда и происходят случаи спонтанного перехода с одной «ветви» реальности на другую.

В пользу существования различных вероятностей будущей («ветвей» Древа Жизни, «бороздок» Колеса Времени и т.п.) свидетельствует история, происшедшая с Густавом и Йоханом Шредерманами. Началась она весной 1973 года, когда семья Шредерманов (муж, жена и сын) переехали из Берлина на ферму под Зальцбургом.

Младший из Шредерманов все лето бегал по окрестностям и однажды обнаружил в лесу покосившийся домик, обходя который чуть не провалился в заросший колодец, но вовремя уцепился за куст. Возвращаясь домой, он испытал странное головокружение и дома сразу же лег в постель. На следующее утро в дверь дома раздался стук, а когда мальчик открыл ее, то увидел самого себя, мокрого и перепачканного грязью.

Оказалось, что все прошлое у обоих мальчиков полностью совпадает, разные вероятности судеб начинаются после инциндента у колодца, в который один из них провалился, а другой удержался.

Возможно, что сильный стресс и испуг провалившегося мальчика благодаря измененному состоянию сознания переместили его в другую ветвь реальности, где уже существовал он же, но не провалившийся в колодец.

Характерно, что в последствии родители присвоили мальчикам новые имена и каждый из них жил собственной судьбой: один занялся экспортом пива, другой стал архитектором.

1. Ω = {11,12,13,14,15,16, 21, 22,..., 66},

2. Ω = {2,3,4,5,6, 7,8,9,10,11,12}

3. ● A = {16,61,34, 43, 25, 52};

● B = {11,12, 21,13,31,14, 41,15, 51,16, 61}

● C = {12, 21,36,63,45, 54,33,15, 51, 24,42,66}.

D = {СУММА ОЧКОВ РАВНА 2 ИЛИ 3 };

E = {СУММА ОЧКОВ РАВНА 10}.

Описать событие: С = {ЦЕПЬ ЗAМКНУТA} для каждого случая.

Решение. Введем обозначения: событие A - контакт 1 за­мкнут; событие В - контакт 2 замкнут; событие С - цепь замкнута, лампочка горит.

1. Для параллельного соединения цепь замкнута, когда хотя бы один из контактов замкнут, поэтому С = A + В ;

2. Для последовательного соединения цепь замкнута, ко­гда замкнуты оба контакта, поэтому С = A · В .

Задача. 1.1.4 Составлены две электрические схемы:

Событие A - цепь замкнута, событие A i - I –й кон­такт замкнут. Для какой из них справедливо соотноше­ние

A1 · (A2 + A3 · A4) · A5 = A?

Решение . Для первой схемы A = A1 · (A2 · A3 + A4 · A5), так как параллельному соединению соответствует сумма собы­тий, а последовательному соединению - произведение событий. Для второй схемы A = A 1 (A2 + A3 A4 A5). Сле­довательно, данное соотношение справедливо для второй схемы.

Задача. 1.1.5 Упростить выражение (A + B)(B + C)(C+ A).

Решение. Воспользуемся свойствами операций сложения и умножения событий.

(A + B)(B + C)(A + C) =

(AB + AC + B B + BC)(A + C) =

= (AB + AC + B + BC)(A + C) =

(AB + AC + B)(A + C) = (B + AC)(A + C) =

= BA + BC + ACA + ACC = B A + BC + AC.

Задача. 1.1.6 Доказать, что события A, AB и A+B Обра­зуют полную группу.

Решение. При решении задачи воспользуемся свойства­ми операций над событиями. В начале покажем, что эти события попарно несовместны.

A теперь покажем, что сумма этих событий дает простран­ство элементарных событий.

Задача. 1.1.7 С помощью схемы Эйлера–Венна проверить правило де-Моргана:

А) Заштриховано событие AB.

Б) Событие A - вертикальная штриховка; событие B - горизонтальная штриховка. Событие

{A+B} - заштрихованная область.

Из сопоставления рисунков а) и в) следует:

Задача. 1.2.1 Сколькими способами можно рассадить 8 человек:

1. В один ряд?

2. За круглым столом?

Решение.

1. Искомое число способов равно числу перестановок из 8, т. е.

P8 = 8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 = 40320

2. Так как за круглым столом выбор первого человека не влияет на чередование элементов, то первым можно взять любого, а оставшихся упорядочим относительно выбранного. Это действие можно осуществить 8!/8 = 5040 способами.

Задача. 1.2.2 На курсе изучается 5 предметов. Скольки­ми способами можно составить расписание на субботу, ес­ли в этот день должны быть две различные пары?

Решение. Искомое число способов есть число размещений

Из 5 по 2, так как нужно учесть порядок пар:

Задача. 1.2.3 Сколько экзаменационных комиссий, состо­ящих из 7 человек, можно составить из 15 преподавате­лей?

Решение. Искомое число комиссий (без учета порядка) - это число сочетаний из 15 по 7:

Задача. 1.2.4 Из корзины, содержащей двадцать прону­мерованных шаров выбирают на удачу 5 шаров. Опреде­лить число элементов пространства элементарных собы­тий этого опыта, если:

Шары выбираются последовательно один за другим с возвращением после каждого извлечения;

Шары выбирают один за другим, не возвращая;

Выбирают сразу 5 шаров.

Решение.

Число способов извлечь первый шар из корзины равно 20. Так как извлеченный шар вернулся в корзину, то число способов извлечь второй шар также равно 20 и т. д. Тогда число способов извлечь 5 шаров в этом слу­чае равно 20 · 20 · 20 · 20 · 20 = 3200000.

Число способов извлечь первый шар из корзины рав­но 20. Так как извлеченный шар после извлечения не вернулся в корзину, то число способов извлечь второй шар стало равно 19 и т. д. Тогда число способов извлечь 5 шаров без возвращения равно 20 · 19 · 18 · 17 · 16 = A52 0

Число способов извлечь из корзины 5 шаров сразу рав­но числу сочетаний из 20 по 5:

Задача. 1.2.5 Подброшены две игральные кости. Найти вероятность события A того, что выпадет хотя бы одна единица.

Решение. На каждой кости может выпасть любое число очков от 1 до 6. Поэтому пространство элементарных со­бытий содержит 36 равновозможных исходов. Событию A благоприятствуют 11 исходов: (1,1), (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (1,5), (5,1), (1,6), (6,1), поэтому

Задача. 1.2.6 На красных карточках написаны буквы у, и, я, к, ц, ф, н, на синих - буквы а, а, о, т, т, с, ч. После тща­тельного перемешивания, что вероятнее: с первого раза из букв на красных карточках составить слово «функция» или из букв на синих карточках слово «частота»?

Решение. Пусть событие A - наудачу составленное из 7 букв слово «функция», событие B - наудачу составлен­ное из 7 букв слово «частота». Так как упорядочиваются два множества из 7 букв, то число всех исходов для со­бытий A и B равно n = 7!. Событию A благоприятствует один исход m = 1, так как все буквы на красных карточ­ках различны. Событию B благоприятствуют m = 2! · 2! ис­ходов, так как буквы «а» и «т» встречаются дважды. Тогда P(A) = 1/7! , P(B) = 2! 2! /7! , P(B) > P(A).

Задача. 1.2.7 На экзамене студенту предлагается 30 би­летов; в каждом билете два вопроса. Из 60 вопросов, вошед­ших в билеты, студент знает только 40. Найти вероят­ность того, что взятый студентом билет будет состо­ять

1. из известных ему вопросов;

2. из неизвестных ему вопросов;

3. из одного известного и одного неизвестного вопроса.

Решение. Пусть A - событие, состоящее в том, что на оба вопроса студент знает ответ; B - не знает ответа на оба вопроса; C - на один вопрос знает ответ, на другой - не знает. Выбор двух вопросов из 60 можно осуществить n = C260 = 60 2·59 = 1770 способами.

1. Имеется m = C240 = 40 2·39 = 780 возможностей выбора известных студенту вопросов. Тогда P(A) = M N = 17 78 70 0 = 0,44

2. Выбор двух неизвестных вопросов из 20 можно осуществить m = C220 = 20 2·19 = 190 способами. В таком случае

P(B) = M N = 11 79 70 0 = 0,11

3. Существует m = C14 0 ·C21 0 = 40·20 = 800 способов выбрать билет с одним известным и одним неизвестным вопроcом. Тогда P(C) = 18 70 70 0 = 0,45.

Задача. 1.2.8 По трем каналам послана некоторая ин­формация. Каналы работают независимо друг от друга. Найти вероятность того, что информация достигнет це­ли

1. Только по одному каналу;

2. Хотя бы по одному каналу.

Решение. Пусть A - событие, состоящее в том, что инфор­мация достигает цели только по одному каналу; B - хотя бы по одному каналу. Опыт - передача информации по трем каналам. Исход опыта - информация достигла цели. Обозначим Ai - информация достигает цели по i-му каналу. Пространство элементарных событий имеет вид:

Событию B благоприятствуют 7 исходов: все исходы, кро­меТогда n = 8; mA = 3; mB = 7; P(A) = 3 8 ; P(B) = 7 8.

Задача. 1.2.9 На отрезке единичной длины случайным об­разом появляется точка. Найти вероятность того, что расстояние от точки до концов отрезка больше 1/8.

Решение. По условию задачи искомому событию удовле­творяют все точки, появляющиеся на интервале (a; b).

Так как его длина s = 1 - 1 8 + 1 8 = 3 4, а длина всего отрезка S = 1, то искомая ве­роятность равна P = s/S = 3/14 = 0.75.

Задача. 1.2.10 В партии из N изделий K изделий являются бракованными. Для контроля выбирается m изделий. Най­ти вероятность того, что из M Изделий L Окажутся брако­ванными (событие А).

Решение. Выбор m изделий из n можно осуществить способами, а выбор L бракованных из k бракованных - способами. После выбора L бракованных изделий останется (m - L ) годных, находящихся среди (n - k) изделий. Тогда число исходов, благоприятствующих событию A, равно·

И искомая вероятность

Задача. 1.3.1 B урне 30 шаров: 15 красных, 10 синих и 5 белых. Найти вероятность того, что наугад вынутый шар - цветной.

Решение. Пусть событие A - вынут красный шар, собы­тие B - вынут синий шар. Тогда события (A + B) - вынут цветной шар. Имеем P(A) = 1 3 5 0 = 1 2 , P(B) = 1 3 0 0 = 1 3. Так как

События A и B несовместны, то P(A + B) = P(A) + P(B) = 1 2 + 1 3 = 5 6 = 0.83.

Задача. 1.3.2 Вероятность того, что будет снег (событие A), равна 0.6, А того, что будет дождь (событие B), равна 0.45. Найти вероятность плохой погоды, если вероятность дождя со снегом (событие AB) равна 0.25.

Решение. События A и B совместны, поэтому P(A + B) = P(A) + P(B) - P(AB) = 0.6 + 0.45 - 0.25 = 0.8

Задача. 1.3.3 B первом ящике 2 белых и 10 черных шаров, во втором - 3 белых и 9 черных шаров, в третьем - 6 бе­лых и 6 черных шаров. Из каждого ящика вынули по шару. Найти вероятность того, что все вынутые шары белые.

Решение. Событие A - вынут белый шар из первого ящи­ка, B - из второго ящика, C – из третьего. Тогда P(A) = 12 2 = 1 6; P(B) = 13 2 = 1 4; P(C) = 16 2 = 1 2. Событие ABC - все вынутые

Шары - белые. События A, B,C - независимые, поэтому

P(ABC) = P(A)·P (B)·P (C) = 1 6 · 1 4 · 1 2 = 41 8 = 0.02

Задача. 1.3.4 B электрическую цепь последовательно включены 5 Элементов, работающие независимо друг от друга. Вероятность отказов первого, второго, третье­го, четвертого, пятого элементов соответственно равны 0.1; 0.2; 0.3; 0.2; 0.1. Найти вероятность того, что тока в цепи не будет (событие A).

Решение. Так как элементы включены последовательно, то тока в цепи не будет, если откажет хотя бы один эле­мент. Событие Ai(i =1...5) - откажет I - й элемент. События

Задача. 1.3.5 Цепь состоит из независимых блоков, соеди­ненных в систему с одним входом и одним выходом.

Выход из строя за время Т различных элементов цепи - независимые события, имеющие следующие вероятно­сти P 1 = 0.1; P2 = 0.2; P3 = 0.3; P4 = 0.4. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Найти надежность системы.

Решение. Если событие A - {СИСТЕМА НАДЕЖНА}, Ai - {i - й БЛОК РАБОТАЕТ БЕЗОТКАЗНО}, то A = (A1 + A2)(A3 + A4). События A1+A2, A3+A4 - независимые, события A1 и A2, A3 и A4 - совместные. По формулам умножения и сложения вероятностей

Задача. 1.3.6 Рабочий обслуживает 3 станка. Вероят­ность того, что в течение часа станок не потребует вни­мания рабочего, равна для первого станка 0.9, для второго станка - 0.8, для третьего станка - 0.7.

Найти вероятность того, что в течение некоторого часа

1. Потребует внимания второй станок;

2. Потребуют внимания два станка;

3. Потребуют внимания не менее двух станков.

Решение. Пусть Ai - i-й станок потребует внимания ра­бочего,- i-й станок не потребует внимания рабочего. Тогда

Пространство элементарных событий:

1. Событие A - потребует внимания второй станок: Тогда

Так как события несовместные и независимые. P(A) = 0.9·0.8·0.7 + 0.1·0.8·0.7 + 0.9·0.8·0.3 + 0.1·0.8·0.3 = 0.8

2. Событие B - потребуют внимания два станка:

3. Событие C - потребуют внимания не менее двух стан­
ков:

Задача. 1.3.7 B машину «Экзаменатор» введено 50 Вопро­сов. Студенту предлагается 5 Вопросов и ставится оценка «отлично», если на все вопросы получен верный ответ. Най­ти вероятность получить “отлично”, если студент подго­товил только 40 Вопросов.

Решение. A - {ПОЛУЧЕНА ОЦЕНКА «ОТЛИЧНО»}, Ai - {ОТВЕТИЛ НА i - й ВОПРОС}. Тогда A = A1A2A3A4A5, имеем:

Или, другим способом - c помощью формулы классической вероятности:И

Задача. 1.3.8 Вероятности того, что нужная сборщику деталь находится в I , II , III , IV ящике, соответственно рав­ны 0.6; 0.7; 0.8; 0.9. Найти вероятность того, что сборщику придется проверить все 4 ящика (событие A ).

Решение. Пусть Ai - {Нужная сборщику деталь находит­ся в i-м ящике.} Тогда

Так как события несовместны и независимы, то

Задача. 1.4.1 Обследовалась группа из 10000 человек в возрасте свыше 60 лет. Оказалось, что 4000 человек яв­ляются постоянно курящими. У 1800 курящих обнаружи­лись серьезные изменения в легких. Среди некурящих изме­нения в легких имели 1500 человек. Какова вероятность того, что наугад обследованный человек, имеющий изме­нения в легких, является курящим?

Решение. Введем гипотезы: H1 - обследованный является постоянно курящим, H2 - является некурящим. Тогда по условию задачи

P(H1)= ------- =0,4, P(H2)=--------- =0,6

Обозначим через A событие, состоящее в том, что об­следованный имеет изменения в легких. Тогда по условию задачи

По формуле (1.15) находим

Искомая вероятность того, что обследованный человек является курящим, по формуле Байеса равна

Задача. 1.4.2 В продажу поступают телевизоры трех за­водов: 30% с первого завода, 20% - со второго, 50% - с третьего. Продукция первого завода содержит 20% теле­визоров со скрытым дефектом, второго - 10% , третьего - 5%. Какова вероятность приобрести исправный телеви­зор?

Решение. Рассмотрим события: A - приобретен исправ­ный телевизор; гипотезы H1, H2, H3 - телевизор поступил в продажу соответственно с первого, второго, третьего заво­да. По условию задачи

По формуле (1.15) находим

Задача. 1.4.3 Имеются три одинаковых по виду ящика. В первом 20 белых шаров, во втором - 10 белых и 10 черных шаров, в третьем - 20 черных шаров. Из наугад выбран­ного ящика вынут белый шар. Найти вероятность того, что этот шар из второго ящика.

Решение. Пусть событие A - вынут белый шар, гипотезы H1, H2, H3 - шар вынут соответственно из первого, второго, третьего ящика. Из условия задачи находим

Тогда
По формуле (1.15) находим

По формуле (1.16) находим

Задача. 1.4.4 Телеграфное сообщение состоит из сигна­лов «точка» и «тире». Статистические свойства помех та­ковы, что искажаются в среднем 2/5 Сообщений «точка» и 1/3 Сообщений «тире». Известно, что среди передавае­мых сигналов «точка» и «тире» встречаются в соотноше­нии 5: 3. Определить вероятность того, что принят пе­редаваемый сигнал, если:

А) принят сигнал «точка»;

Б) принят сигнал «тире».

Решение. Пусть событие A - принят сигнал «точка», а со­бытие B - принят сигнал «тире».

Можно сделать две гипотезы: H1 - передан сигнал «точ­ка», H2 - передан сигнал «тире». По условию P(H1) : P(H2) =5: 3. Кроме того, P(H1) + P(H2) = 1. Поэтому P(H1) = 5/8, P(H 2 ) = 3/8. Известно, что

Вероятности событий A И B Находим по формуле пол­ной вероятности:

Искомые вероятности будут:

Задача. 1.4.5 Из 10 каналов радиосвязи 6 каналов защи­щены от воздействия помех. Вероятность того, что за­щищенный канал в течении времени T не выйдет из строя, равна 0.95, для незащищенного канала - 0.8. Найти ве­роятность того, что случайно выбранные два канала не выйдут из строя в течение времени T , причем оба канала не защищены от воздействия помех.

Решение. Пусть событие A - оба канала не выйдут из строя в течение времени t, событие A1 - Выбран защищен­ный канал, A2 - Выбран незащищенный канал.

Запишем пространство элементарных событий для опыта - {выбрано два канала}:

Ω = {A1A1, A1A2, A2A1, A2A2}

Гипотезы:

H1 - оба канала защищены от воздействия помех;

H2 - первый выбранный канал защищен, второй вы­бранный канал не защищен от воздействия помех;

H3 - первый выбранный канал не защищен, второй выбранный канал защищен от воздействия помех;

H4 - оба выбранных канала не защищены от помех. Тогда

И

Задача. 1.5.1 По каналу связи передается 6 Сообщений. Каждое из сообщений может быть искажено помехами с вероятностью 0.2 Независимо от других. Найти вероят­ность того, что

1. 4 сообщения из 6 не искажены;

2. Не менее 3 из 6 переданы искаженными;

3. Хотя бы одно сообщение из 6 искажено;

4. Не более 2 из 6 не искажены;

5. Все сообщения переданы без искажения.

Решение. Так как вероятность искажения 0.2, то вероят­ность передачи сообщения без помех - 0.8.

1. Используя формулу Бернулли (1.17), найдем вероят­
ность передачи 4 сообщений из 6 без помех:

2. не менее 3 из 6 переданы искаженными:

3. хотя бы одно сообщение из 6 искажено:

4. хотя бы одно сообщение из 6 искажено:

5. все сообщения переданы без искажения:

Задача. 1.5.2 Вероятность того, того, что летом день будет ясным, равна 0.42; вероятность пасмурного дня рав­на 0.36 и переменной облачности - 0.22. Сколько дней из 59 можно ожидать ясных и пасмурных?

Решение. Из условия задачи видно, что надо искать наи­более вероятное число ясных и пасмурных дней.

Для ясных дней P = 0.42, N = 59. Составляем неравен­ства (1.20):

59 0.42 + 0.42 - 1 < m0 < 59 0.42 + 0.42.

24.2 ≤ Mo ≤ 25.2 → Mo = 25.

Для пасмурных дней P = 0.36, N = 59 и

0.36 59 + 0.36 - 1 ≤ M 0 ≤ 0.36 59 + 0.36;

Следовательно 20.16 ≤ M 0 ≤ 21.60; → M 0 = 21.

Таким образом, наиболее вероятное число ясных дней Mo =25, пасмурных дней - M0 = 21. Тогда летом можно ожи­дать Mo + M0 =46 ясных и пасмурных дней.

Задача. 1.5.3 На лекции по теории вероятностей при­сутствует 110 студентов курса. Найти вероятность того что

1. k студентов (k = 0,1,2) из присутствующих родились первого сентября;

2. хотя бы один студент курса родился первого сентя­бря.

P =1/365 очень мала, поэтому используем фор­мулу Пуассона (1.22). Найдем параметр Пуассона. Так как

N = 110, то λ = np = 110 1 /365 = 0.3.

Тогда по формуле Пуассона

Задача. 1.5.4 Вероятность того, что деталь не стан­дартная, равна 0.1. Сколько деталей нужно отобрать, чтобы с вероятностью P = 0.964228 Можно было утвер­ждать, что относительная частота появления нестан­дартных деталей отклоняется от постоянной вероятно­сти p = 0.1 По абсолютной величине не более, чем на 0.01 ?

Решение.

Требуемое число N Найдем по формуле (1.25). Имеем:

P = 1.1; q = 0.9; P = 0.96428. Подставим данные в формулу:

Откуда находим

По таблице значений функции Φ(X ) находим, что

Задача. 1.5.5 Вероятность выхода из строя за время Т одного конденсатора равна 0.2. Определить вероятность того, что за время Т из 100 конденсаторов выйдут из строя

1. Ровно 10 конденсаторов;

2. Не менее 20 конденсаторов;

3. Менее 28 конденсаторов;

4. От 14 до 26 конденсаторов.

Решение. Имеем П = 100, P = 0.2, Q = 1 - P = 0.8.

1. Ровно 10 конденсаторов.

Так как П Велико, воспользуемся локальной теоремой Муавра - Лапласа:

Вычислим

Так как функция φ(х) - четная, то φ(-2,5) = φ(2,50) = 0,0175 (находим по таблице значений функции φ(х). Искомая вероятность

2. Не менее 20 конденсаторов;

Требование, чтобы из 100 конденсаторов из строя вы­шли не менее 20, означает, что из строя выйдут либо 20, либо 21, ..., либо 100. Таким образом, Т1 = 20, Т 2 =100. Тогда

По таблице значений функции Φ(x) Найдем Φ(x1) = Φ(0) = 0, Φ(x2) = Φ(20) = 0.5. Искомая вероятность:

3. Менее 28 конденсаторов;

(здесь было учтено, что функция Лапласа Ф(x) - нечет­ная).

4. От 14 до 26 конденсаторов. По условию M1= 14, m2 = 26.
Вычислим x 1,x2:

Задача. 1.5.6 Вероятность появления некоторого собы­тия в одном опыте равна 0.6. Какова вероятность, что это событие появиться в большинстве из 60 опытов?

Решение. Количество M Появлений события в серии ис­пытаний находится в промежутке . «В большинстве опытов» означает, что M Принадлежит промежутку По условию N = 60, P = 0.6, Q = 0.4, M 1 = 30, m2 = 60. Вычислим x1 и x2:

Случайные величины и их распределения

Задача. 2.1.1 Дана таблица, где в верхней строке указа­ны возможные значения случайной величины X, а в нижней - их вероятности.

Может ли эта таблица быть рядом распределения X?

Ответ: Да, так как p1 + p2 + p3 + p4 + p5 = 1

Задача. 2.1.2 Выпущено 500 Лотерейных билетов, причем 40 Билетов принесут их владельцам выигрыш по 10000 Руб., 20 Билетов - по 50000 Руб., 10 Билетов - по 100000 Руб., 5 Билетов - по 200000 Руб., 1 Билет - 500000 Руб., осталь­ные - без выигрыша. Найти закон распределения выигры­ша для владельца одного билета.

Решение.

Возможные значения X: x5 = 10000, x4 = 50000, x3 = 100000, x2 = 200000, x1 = 500000, x6 = 0. Вероятности этих возможных значений:

Искомый закон распределения:

Задача. 2.1.3 Стрелок, имея 5 Патронов, стреляет до первого попадания в цель. Вероятность попадания при каждом выстреле равна 0.7. Построить закон распределе­ния числа использованных патронов, найти функцию рас­пределения F (X ) и построить ее график, найти P(2 < x < 5).

Решение.

Пространство элементарных событий опыта

Ω = {1, 01, 001, 0001, 00001, 11111},

Где событие {1} - попал в цель, событие {0} - не попал в цель. Элементарным исходам соответствуют следующие значения случайной величины числа использованных па­тронов: 1, 2, 3, 4, 5. Так как результат каждого следующего выстрела не зависит от предыдущего, то вероятности воз­можных значений:

P1 = P(x1 = 1) = P(1) = 0.7; P2 = P(x2 = 2) = P(01) = 0.3 · 0.7 = 0.21;

P3 = P(x3 = 3) = P(001) = 0.32 · 0.7 = 0.063;

P4 = P(x4 = 4) = P(0001) = 0.33 · 0.7 = 0.0189;

P5 = P(x5 = 5) = P(00001 + 00000) = 0.34 · 0.7 + 0.35 = 0.0081.

Искомый закон распределения:

Найдем функцию распределения F (X ), Пользуясь формулой (2.5)

X ≤1, F(x) = P(X < x) = 0

1 < x ≤2, F(x) = P(X < x) = P1 (X1 = 1) = 0.7

2 < x ≤ 3, F(x) = P1 (X = 1) + P2(x = 2) = 0.91

3 < x ≤ 4, F(x) = P1 (x = 1) + P2(x = 2) + P3(x = 3) =

= 0.7 + 0.21 + 0.063 = 0.973

4 < x ≤ 5, F(x) = P1(x = 1) + P2(x = 2) + P3(x = 3) +

+ P4(x = 4) = 0.973 + 0.0189 = 0.9919

X > 5, F (x) = 1

Найдем P(2 < x < 5). Применим формулу (2.4): P(2 < X < 5) = F(5) - F (2) = 0.9919 - 0.91 = 0.0819

Задача. 2.1.4 Дана F (X ) некоторой случайной величины:

Записать ряд распределения дляX.

Решение.

Из свойств F (X ) Следует, что возможные значения слу­чайной величины X - Точки разрыва функции F (X ), А со­ответствующие им вероятности - скачки функции F (X ). Находим возможные значения случайной величины X={0,1,2,3,4}.

Задача. 2.1.5 Установить, какая из функций

Является функцией распределения некоторой случайной величины.

В случае утвердительного ответа, найти вероят­ность того, что соответствующая случайная величина принимает значения на [-3,2].

Решение. Построим графики функций F1(x) и F2(x):

Функция F2(x) не является функцией распределения, так как не является неубывающей. Функция F1(x) является

Функцией распределения некоторой случайной величины, так как является неубывающей и удовлетворяет условию (2.3). Найдем вероятность попадания на промежуток:

Задача. 2.1.6 Дана плотность вероятности непрерывной случайной величины X:

Найти:

1. Коэффициент C;

2. Функцию распределения F(x);

3. Вероятность попадания случайной величины в интер­вал (1, 3).

Решение. Из условия нормировки (2.9)находим

Следовательно,

По формуле (2.10) находим:

Таким образом,

По формуле (2.4) находим

Задача. 2.1.7 Случайное время простоя радиоэлектрон­ной аппаратуры в ряде случаев имеет плотность вероят­ности

Где M = lge = 0.4343...

Найти функцию распределения F(x).

Решение. По формуле (2.10) находим

Где

Задача. 2.2.1 Дан ряд распределения дискретной случай­ной величины X:

Найти математическое ожидание, дисперсию, сред­нее квадратичное отклонение, M, D[-3X + 2].

Решение.

По формуле (2.12) находим математическое ожидание:

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 10 · 0.2 + 20 · 0.15 + 30 · 0.25 + 40 · 0.4 = 28.5

M = 2M[X] + M = 2M[X] + 5 = 2 · 28.5 + 5 = 62. По формуле (2.19) найдем дисперсию:

Задача. 2.2.2 Найти математическое ожидание, диспер­сию и среднее квадратичное отклонение непрерывной слу­чайной величины X, функция распределения которой

.

Решение. Найдем плотность вероятности:

Математическое ожидание найдем по формуле (2.13):

Дисперсию найдем по формуле (2.19):

Найдем сначала математическое ожидание квадрата случайной величины:

Среднее квадратичное отклонение

Задача. 2.2.3 X имеет ряд распределения:

Найти математическое ожидание и дисперсию случайной величины Y = EX.

Решение. M [ Y ] = M[ EX] = e -- 1 · 0.2 + e0 · 0.3 + e1 · 0.4 + e2 · 0.1 =

0.2 · 0.3679 + 1 · 0.3 + 2.71828 · 0.4 + 7.389 · 0.1 = 2.2.

D[Y] = D = M[(eX)2 - M2 [E X] =

[(e-1)2 0.2 + (e0)2 0.3 + (e1)2 0.4 + (e2)2 0.1] - (2.2)2 =

= (e--2 0.2 + 0.3 + e2 0.4 + e4 0.1) - 4.84 = 8.741 - 4.84 = 3.9.

Задача. 2.2.4 Дискретная случайная величина X Может принимать только два значения X1 И X2, причем X1 < x2. Известны вероятность P1 = 0.2 Возможного значения X1, математическое ожидание M[X] = 3.8 И дисперсия D[X] = 0.16. Найти закон распределения случайной величины.

Решение. Так как случайная величина X принимает толь­ко два значения x1 и x2, то вероятность p2 = P(X = x2) = 1 - p1 = 1 - 0.2 = 0.8.

По условию задачи имеем:

M[X] = x1p1 + x2p2 = 0.2x1 + 0.8x2 = 3.8;

D[X] = (x21p1 + x22p2) - M2[X] = (0.2x21 + 0.8x22) - (0.38)2 = 0.16.

Таким образом получили систему уравнений:

Условию x1

Задача. 2.2.5 Случайная величина X подчинена закону распределения, график плотности которого имеет вид:

Найти математическое ожидание, дисперсию и сред­нее квадратичное отклонение.

Решение. Найдем дифференциальную функцию распре­деления f(x). Вне интервала (0, 3) f(x) = 0. На интервале (0, 3) график плотности есть прямая с угловым коэффици­ентом k = 2/9, проходящая через начало координат. Таким образом,

Математическое ожидание:

Найдем дисперсию и среднее квадратичное отклоне­ние:

Задача. 2.2.6 Найти математическое ожидание и дис­персию суммы очков, выпадающих на четырех игральных кубиках при одном бросании.

Решение. Обозначим A - число очков на одном кубике при одном бросании, B – число очков на втором кубике, C - на третьем кубике, D - на четвертом кубике. Для случайных ве­личин A, B, C, D за­кон распределения один.

Тогда M[A] = M[B] = M[C] = M[D] = (1+2+3+4+5+6) / 6 = 3.5

Задача. 2.3.1 Вероятность того, что частица, вылетев­шая из радиоактивного источника, будет зарегистриро­вана счетчиком, равна 0.0001. За время наблюдения из ис­точника вылетело 30000 Частиц. Найти вероятность то­го, что счетчик зарегистрировал:

1. Ровно 3 частицы;

2. Ни одной частицы;

3. Не менее 10 частиц.

Решение. По условию П = 30000, P = 0.0001. События, со­стоящие в том, что частицы, вылетевшие из радиоактив­ного источника, зарегистрированы, независимы; число П Велико, а вероятность P Мала, поэтому воспользуемся рас­пределением Пуассона:Найдем λ: λ = п P = 30000 0.0001 = 3 = М[Х]. Искомые вероятности:

Задача. 2.3.2 В партии 5% нестандартных деталей. На­удачу отобраны 5 деталей. Написать закон распределе­ния дискретной случайной величины X - числа нестан­дартных деталей среди пяти отобранных; найти мате­матическое ожидание и дисперсию.

Решение. Дискретная случайная величина X - число нестандартных деталей - имеет биномиальное распреде­ление и может принимать следующие значения: x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5. Вероятность нестандарт­ной детали в партии p = 5/100 = 0.05. Найдем вероятности этих возможных значений:

Напишем искомый закон распределения:

Найдем числовые характеристики:

0 0.7737809 + 1 0.2036267 + 2 0.0214343+

3 0.0011281 + 4 0.0000297 + 5 0.0000003 = 0.2499999 ≈ 0.250

M[X] = N p = 5 0.05 = 0.25.

D[X] = M M 2 [X] = 02 0.7737809 + 12 0.2036267+

22 0.0214343 + 32 0.0011281 + 42 0.0000297 + 52 0.0000003- 0.0625 =

0.2999995 - 0.0625 = 0.2374995 ≈ 0.2375

Или D [ X ] = n p (1 - P) = 5 0.05 0.95 = 0.2375.

Задача. 2.3.3 Время обнаружения цели радиолокатором распределено по показательному закону

Где 1/ λ = 10 Сек. - среднее время обнаружения цели. Найти вероятность того, что цель будет обнаружена за время от 5 До 15 Сек. после начала поиска.

Решение. Вероятность попадания случайной величины X В интервал (5, 15) Найдем по формуле (2.8):

ПриПолучаем

0.6065(1 - 0.3679) = 0.6065 0.6321 = 0.3834

Задача. 2.3.4 Случайные ошибки измерения подчинены нормальному закону с параметрами a = 0, σ = 20 Мм . За­писать дифференциальную функцию распределения F (X ) и найти вероятность того, что при измерении допущена ошибка в интервале от 5 До 10 Мм .

Решение. Подставим значения параметров a и σ в диффе­ренциальную функцию распределения (2.35):

По формуле (2.42) найдем вероятность попадания слу­чайной величины X В интервале , т. е. A = 0, B = 0.1. То­гда дифференциальная функция распределения F(x) Будет иметь вид

человека содержится некий план, с которым пришла сюда душа, все варианты развития событий, в том числе. Можно туда зайти и просмотреть последствия важных решений, которые мы принимаем. Например, о смене работы и образа жизни. Делать это можно как в самостоятельных медитациях, так и в совместных процессах ведущий-ведомый. Ниже описание того, как это было проделано в сеансе

Вероятностные линии

Проецирую три ветки:

1) остаться в Москве на имеющейся работе;

2) продать или сдать квартиру и уехать в Азию к друзьям, чтобы войти партнером в их туристический бизнес;

3) идеальный вариант: ухожу с работы, участвую в бизнесе друзей на проектной основе, при этом есть свой собственный дом, но не в Москве (то ли тоже Азия, но другая, то ли Восточная Европа, то ли Латинская Америка - большая светлая вилла, в которой можно принимать гостей и проводить ретриты), есть пара - собственные партнерские отношения, и есть свое дело.

Выстраиваем все три ветки как дороги, смотрим, есть ли ответвления.

Московская ветка - прочный толстый серый канат, тусклый и надежный, не оторвешься, не потеряешься. От каната идет несколько более тонких веревок, какие то поярче и поинтересней, но ни одна не привлекает, не зовет и не светится. Ощущение - я по прежнему люблю Москву, но эта тема себя изжила.


Ветка с Азией и друзьями - очень яркая и наглядная, но короткая и жидкая, что ли. В ней не хватает потенциала для того,чтобы уверенно развернуться в перспективе. Недостаточно ресурса.

Идеальная третья картинка разделилась на несколько географических точек на карте, каждая со своим специфическим налетом. Третья ветка, внутри которой есть моя собственная история - наиболее привлекательна, конечно же, для меня. Она не такая осязаемая сейчас как московская и не такая цветная как вторая, Но она зовет к себе. И светится, наполненная изнутри. Как тонкий живой лучик, пульсирует и переливается.

Выбор своего пути

В этой версии развития событий я свободно перемещаюсь по всему миру при желании. Доход у меня ниже, чем в Москве, но его достаточно, чтобы ни в чем не нуждаться и ни в чем себе не отказывать, пусть и в меру. Я приезжаю на проекты к друзьям, они гостят у меня. Я что-то пишу и работаю с людьми, делаю это в удовольствие. Имеется еще какой то светский бизнес проект, который тоже более-менее успешен, и дает стабильный заработок.

При этом есть близкий человек, с которым мы совместно реализуем эту историю, в паре. Для того, чтобы она проявилась, нужно не только мое намерение, и с той и с моей стороны потребуется некая плата, само собой, как за любой выбор. Как только ты что-то выбираешь, ты автоматически от чего то отказываешься.. Это всегда страшно и небезопасно, к тому же. Плата как отказ от имеющегося комфорта или свободы. Плата как позволение войти в свою жизнь чему то совершенно новому и неизвестному, пусть и заманчивому. Чистая свобода воли и чистота намерений и с той, и с другой стороны. А там уж - как сложится.. В ином ключе (не на чистом волеизъявлении) эта тема просто не взлетит.

Весь этот процесс сейчас в развертке пребывает. Эта ветка находится на стадии вызревания, и если все сложится хорошо, то она сможет полностью проявиться в моей реальности. Смотрим, есть ли помехи или камни на этой идеальной для меня линии. Вижу упавшее дерево, прямо на дороге. Это страхи и недоверие к самой себе. Из серии - это слишком хорошо, чтобы так оно все и сложилось, так не бывает, это все иллюзии и сказки, придуманные самой себе. Расчищаю дорогу.

Следующий важный шаг - принять окончательное собственное решение - нужно ли туда вообще забрасывать внимание, в эту ветку-мечту, поскольку "отмотать" так просто не получится потом. Понимаю для себя, что так или иначе уже давно напитываю ее энергией и внутренне активирую. И это происходит даже не из-за упрямства или желания, чтобы было по моему.

Гораздо более тонкие вещи и знаки, которые сигнализируют о том, что это судьба, как бы громко это ни звучало. Эта ветка постепенно становится все более и более ощутимой. Она уплотняется, медленно и верно. Хотя, конечно же, все еще крайне неопределенно и может свернуться в любой момент, но есть ощущение, что она сама ко мне идет, эта ветка.

Поскольку она давно уже была спроектирована и предопределена, заказана, можно сказать. И я понимаю, куда это ведет. И как оно складывается. И что это правильное развитие событий. Хотя иногда тупо боюсь в это поверить..

И еще очень не хочется эту ветку цементировать. Делать жесткой и однозначной.. Не нужно в нее встраивать жесткую привязку к определенному месту или роду занятий, или к чему то еще. Хочется чтобы в ней было много стихии: воздуха, воды, огня, земли, чтобы она дышала, чтобы была гибкой и неразрушимой - мобильной, трансформируемой и перенастраиваемой. И чтобы все, что в ней происходило, было бы результатом сотворчества, не автономными действиями. Это в любом случае парная история, она не может родиться как принуждение, тут важна максимальная корректность - ни в коем случае не навязывать и не давить.. Все на свободе воли. А дальше - куда позовет*

Усиление ветки вниманием

Протягиваю из своей Искры луч в направлении этой ветки, в ту точку, куда она стремится, соединяюсь с ней своим вниманием. Тем самым Искра начинает работать на реализацию этой цели, якорится в ней. Я могу этого не осознавать, но работа будет вестись: формирование событий в пространстве будет происходить таким образом, чтобы эта цель была максимально приближена к моей реальности, к своей реализации.

Луч Искры трансформируется в гравитационный луч и притягивает объекты и события из той ветки вероятностей ко мне, как магнитом. Цель становится совсем близкой, можно сказать, я сейчас в ней. Как телепорт, когда не стараешься перейти в новое место всем своим телом, а материализуешь искомое пространство вокруг себя: настраиваешься на цель и притягиваешь ее к себе. И чем ближе она к тебе находится, тем больше твоя воля распространяется на ее реализацию. А уже Искра ответственна за то, чтобы сформировать те события, которые повлекут за собой воплощение этой ветки в действительность, позволят ей сыграть.

Рисую свое будущее светом своей Искры. Там так классно, в этой линии вероятностей - очень красивая история, куда хочется всех позвать в гости.. Большая светлая комната, наполненная жизнью, солнцем и воздухом.. Даю ей топливо, заряжаю потенциалом, чтобы она получила возможность проявиться в реальности. Когда будет готовность принять финальное решение или понадобится посмотреть какие то ответы по развитию этой ветки, можно просто вспоминать это состояние притяжения, пропитываться эмоционально атмосферой и настроением этой комнаты, почувствовать эмоцию творчества и партнерства. Эмоция созидания - это всегда любовь..

Проявление и закрепление результата

Чтобы запечатлеть ту картинку, которая выглядит такой привлекательной, но зыбкой сейчас, нужно пропустить через него свет, влить эмоцию, зарядить позитивом. Войти в состояние ананды - радостного подъема, любящего и любимого существа, влюбленного и наполненного любовью и перенаправить это свое внутреннее топливо в идеальный вариант развития событий.

Прочистить путь и снять вопросы. Сонастроить с другими ветками реальности, окружающими меня и сопричастных игроков, чтобы все это синхронизировалось по месту и по времени. Совпало с намерениями, волей и свободой выбора. Напитать все это своим собственным светом, теплом и любовью для реализации в будущем своего творческого потенциала в том ключе, который так нравится. Экспонировать нужный результат так, чтобы изображение впечаталось светом в чувствительную пленку - канву грядущих событий, прожгло в ней свой оттиск как световая проекция. И выдержать немного, чтобы эффект был как можно ярче.

Теперь нужно обработать созданный отпечаток мечты, чтобы он перешел в слой материальной реальности. Следующий этап - стабилизация. Нужно добавить в картинку немного энергии темноты и холода, чтобы она выкристаллизовалась и приобрела более твердые очертания, перешла из состояния волшебного миража в более плотные слои, закрепилась и проявилась.

Работа с негативным отпечатком.. Результат буквально фиксируется на листе реальности, примерно также, как когда на аналоговую фотобумагу проецируем изображение с аналоговой фотопленки, а потом льем по очереди проявитель и закрепитель чтобы можно было в деталях рассмотреть, что же такое мы запечатлели с помощью света и намерения и войти туда, когда это будет уместно и своевременно.

Поскольку за общение с миром и творческую реализацию отвечает горловая чакра, отправляю туда, в избранную ветку луч из горловой чакры. За ним попросился луч и из второй чакры, следом - из третьей. Потом и остальные чакры подключились, получился такой лучевой душ, как из цветика-семицветика. Промываю и просушиваю все получившееся, наполняю движением, материальной энергией земли, видением, всеми качествами жизненной силы и магнетизма, притягиваю ветку вероятности в свою реальность еще больше, связываю напрямую с каждым из чакральных центров, прописываю ее там в них..

* человек забывает, что будущее многовариантно и часто приявзывается к шаблонным моделям (таковые обычно определяются нумерологией, астрологией и тп). На самом деле каждый из нас -- это поток, а потоку нужно течь, не зацикливаться на рамках, с легкостью отпускать старое и впускать новое, адаптироваться. Поэтому, если будете делать подобные практики, ни в коем случае не "цементируйте" свое намерение, тк мир всегда предлагает еще более классыне варианты, о которых мы сами можем даже не догадываться, особенно сейчас.


Реальность многомерна, мнения о ней многогранны. Здесь показана лишь одна или несколько граней. Не стоит принимать их за истину в последней инстанции, ибо , а у каждого уровня сознания и . Учимся отделять наше от не нашего, либо добывать информацию автономно)

ТЕМАТИЧЕСКИЕ РАЗДЕЛЫ:
| | | | | | | | |



error: Контент защищен !!