Критерии линейной зависимости и независимости систем векторов. Теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.) Свойства линейно зависимых векторов

Следующие дают несколько критериев линейной зависимости и соответственно линейной независимости систем векторов.

Теорема. (Необходимое и достаточное условие линейной зависимости векторов.)

Система векторов является зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие этой системы.

Доказательство. Необходимость. Пусть система линейно зависимая. Тогда, по определению, она представляет нулевой вектор нетривиально, т.е. существует нетривиальная комбинация данной системы векторов равная нулевому вектору:

где хотя бы один из коэффициентов этой линейной комбинации не равен нулю. Пусть , .

Разделим обе части предыдущего равенства на этот ненулевой коэффициент (т.е. умножим на :

Обозначим: , где .

т.е. один из векторов системы линейно выражается через другие этой системы, ч.т.д.

Достаточность. Пусть один из векторов системы линейно выражается через другие вектора этой системы:

Перенесем вектор в правую этого равенства:

Так как коэффициент при векторе равен , то мы имеем нетривиальное представление нуля системой векторов , что означает, что эта система векторов является линейно зависимой, ч.т.д.

Теорема доказана.

Следствие.

1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.

2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Доказательство.

1) Необходимость. Пусть система линейно независимая. Допустим противное и существует вектор системы линейно выражающийся через другие вектора этой системы. Тогда по теореме система является линейно зависимой и мы приходим к противоречию.

Достаточность. Пусть ни один из векторов системы не выражается через другие. Допустим противное. Пусть система линейно зависимая, но тогда из теоремы следует, что существует вектор системы линейно выражающийся через другие векторы этой системы и мы опять приходим к противоречию.

2а) Пусть система содержит нулевой вектор. Допустим для определенности, что вектор :. Тогда очевидно равенство

т.е. один из векторов системы линейно выражается через другие вектора этой системы. Из теоремы следует, что такая система векторов является линейно зависимой, ч.т.д.

Заметим, что этот факт можно доказать непосредственно из линейно зависимой системы векторов.

Так как , то следующее равенство очевидно

Это нетривиальное представление нулевого вектора, а значит система является линейно зависимой.

2б) Пусть система имеет два равных вектора. Пусть для . Тогда очевидно равенство

Т.е. первый вектор линейно выражается через остальные векторы этой же системы. Из теоремы следует, что данная система линейно зависимая, ч.т.д.

Аналогично предыдущему это утверждение можно доказать и непосредственно определения линейно зависимой системы.. Тогда эта система представляет нулевой вектор нетривиально

откуда следует линейная зависимость системы .

Теорема доказана.

Следствие. Система, состоящая из одного вектора является линейно независимой тогда и только тогда, когда этот вектор ненулевой.

Определение 18.2 Система функций ф , ..., ф п называется л и- нейп о з а в и с и м. о й на промежутке (а, (3), если некоторая нетривиальная 5 линейная комбинация этих функций равни нулю на этом промежутке тождественно:

Определение 18.3 Система векторов ж 1 , ..., х п называет,ся линейно в а в и с и м о й, если некоторая нетривиальная, линейная комбинация этих векторов равна пулевому вектору:

Л Во избежание путаницы мы в дальнейшем будем номер компоненты вектора (вектор-функции) обозначать нижним индексом, а номер самого вектора (если таких векторов несколько) верхним.

"Напоминаем, что линейная комбинации называется нетривиальной, если не все коэффициенты в ней нулевые.

Определение 18.4 Система вектор-функций х 1 ^),..., x n (t) называется линейн о з а в и с и м о й на промежутке, (а, /3), если некоторая нетривиальная линейная комбинация этих вектор-функций тождественно равна на этом промежутке нулевому вектору:

Важно разобраться в связи этих трех понятий (линейной зависимости функций, векторов и вектор-функций) друг с другом.

Прежде всего, если представить формулу (18.6) в развернутом виде (вспомнив, что каждая из х г (1) является вектором)


то она окажется эквивалентной системе равенств

означающих линейную зависимость г-х компонент в смысле первого определения (как функций). Говорят, что линейная зависимость вектор- функций влечет их покомпонентную линейную зависимость.

Обратное, вообще говоря, неверно: достаточно рассмотреть пример пары вектор-функций

Первые компоненты этих вектор-функций просто совпадают значит, они линейно зависимы. Вторые компоненты пропорциональны, значит. тоже линейно зависимы. Однако если мы попробуем построить их линейную комбинацию, равную нулю тождественно, то из соотношения

немедленно получаем систему

которая имеет единственное решение С - С -2 - 0. Таким образом, наши вектор-функции линейно независимы.

В чем причина такого странного свойства? В чем фокус, позволяющий из заведомо зависимых функций строить линейно независимые вектор-функции?

Оказывается, все дело не столько в линейной зависимости компонент, сколько в той пропорции коэффициентов, которая необходима для получения нуля. В случае линейной зависимости вектор-функций один и тот же набор коэффициентов обслуживает все компоненты независимо от номера. А вот в приведенном нами примере для одной компоненты требовалась одна пропорция коэффициентов, а для другой другая. Так что фокус на самом деле прост: для того, чтобы из „покомпонентной" линейной зависимости получить линейную зависимость вектор-функций целиком, необходимо, чтобы все компоненты были линейно зависимы „в одной и той же пропорции".

Перейдем теперь к изучению связи линейной зависимости вектор- функций и векторов. Здесь почти очевидным является тот факт, что из линейной зависимости вектор-функций следует, что для каждою фиксированного t* вектора

будут линейно зависимы.

Обратное, вообще говоря, места не имеет: из линейной зависимости векторов при каждом t не следует линейная зависимость вектор-функций. Это легко увидеть на примере двух вектор-функций

При t = 1, t = 2 и t = 3 мы получаем пары векторов

соответственно. Каждая пара векторов пропорциональна (с коэффициентами 1,2 и 3 соответственно). Нетрудно понять, что для любого фиксированного t* наша пара векторов будет пропорциональна с коэффициентом t*.

Если же мы попытаемся построить линейную комбинацию вектор- функций, равную нулю тождественно, то уже первые компоненты дают нам соотношение

что возможно лишь если С = С 2 = 0. Таким образом, наши вектор- функции оказались линейно независимыми. Опять же объяснение такого эффекта состоит в том, что в случае линейной зависимости вектор- функций один и тот же набор констант Cj обслуживает все значения t, а в нашем примере для каждого значения t требовалась своя пропорция между коэффициентами.

Опр. Система элементов x 1 ,…,x m лин. пр-ва V наз-ся линейно зависимой, если ∃ λ 1 ,…, λ m ∈ ℝ (|λ 1 |+…+| λ m | ≠ 0) такие, что λ 1 x 1 +…+ λ m x m = θ.

Опр. Система элементов x 1 ,…,x m ∈ V наз-ся линейно независимой, если из равенства λ 1 x 1 +…+ λ m x m = θ ⟹λ 1 =…= λ m =0.

Опр. Элемент x ∈ V наз-ся линейной комбинацией элементов x 1 ,…,x m ∈ V, если ∃ λ 1 ,…, λ m ∈ ℝ такие, что x= λ 1 x 1 +…+ λ m x m .

Теорема (критерий линейной зависимости): Система векторов x 1 ,…,x m ∈ V линейно зависима тогда и только тогда, когда хотя бы один вектор системы линейно выражается через остальные.

Док-во. Необходимость: Пусть x 1 ,…,x m - линейно зависимы ⟹ ∃ λ 1 ,…, λ m ∈ ℝ (|λ 1 |+…+| λ m | ≠ 0) такие, что λ 1 x 1 +…+ λ m -1 x m -1 + λ m x m = θ. Допустим, λ m ≠ 0, тогда

x m = (- ) x 1 +…+ (- ) x m -1.

Достаточность : Пусть хотя бы один из векторов линейно выражается через остальные вектора: x m = λ 1 x 1 +…+ λ m -1 x m -1 (λ 1 ,…, λ m -1 ∈ ℝ) λ 1 x 1 +…+ λ m -1 x m -1 +(-1) x m =0 λ m =(-1) ≠ 0 ⟹ x 1 ,…,x m - линейно независимы.

Дост. условие линейной зависимости:

Если система содержит нулевой элемент или линейно зависимую подсистему, то она линейно зависима.

λ 1 x 1 +…+ λ m x m = 0 – линейно зависимая система

1) Пусть x 1 = θ, тогда это равенство справедливо при λ 1 =1 и λ 1 =…= λ m =0.

2) Пусть λ 1 x 1 +…+ λ m x m =0 – линейно зависимая подсистема ⟹|λ 1 |+…+| λ m | ≠ 0 . Тогда при λ 1 =0 также получаем, |λ 1 |+…+| λ m | ≠ 0 ⟹ λ 1 x 1 +…+ λ m x m =0 – линейно зависимая система.

Базис линейного пространства. Координаты вектора в данном базисе. Координаты сумм векторов и произведения вектора на число. Необходимое и достаточное условие линейной зависимости системы векторов.

Определение: Упорядоченная система элементов e 1, …, e n линейного пространства V называется базисом этого пространства если:

А) e 1 …е n линейно независимы

Б) ∀ x ∈ α 1 … α n такие, что x= α 1 e 1 +…+ α n е n

x= α 1 e 1 +…+ α n e n – разложение элемента x в базисе e 1, …, e n

α 1 … α n ∈ ℝ – координаты элемента x в базисе e 1, …, e n

Теорема: Если в линейном пространстве V задан базис e 1, …, e n то ∀ x ∈ V столбец координат x в базисе e 1, …, e n определяется однозначно (координаты определяются однозначно)

Доказательство: Пусть x=α 1 e 1 +…+ α n e n и x=β 1 e 1 +…+β n e n


x= ⇔ = Θ, т. е. e 1, …, e n - линейно независимы, то - =0 ∀ i=1, …, n ⇔ = ∀ i=1, …, n ч. т. д.

Теорема: пусть e 1, …, e n - базис линейного пространства V; x, y – произвольные элементы пространства V, λ ∈ ℝ - произвольное число. При сложении x и y их координаты складываются, при умножении x на λ координаты x так же умножаются на λ.

Доказательство: x= (e 1, …, e n) и y= (e 1, …, e n)

x+y= + = (e 1, …, e n)

λx= λ ) = (e 1, …, e n)

Лемма1: (необходимое и достаточное условие линейной зависимости системы векторов)

Пусть e 1 …е n - базис пространства V. Система элементов f 1 , …, f k ∈ V является линейно зависимой тогда и только тогда, когда линейно зависимы столбцы координат этих элементов в базисе e 1, …, e n

Доказательство: разложим f 1 , …, f k по базису e 1, …, e n

f m =(e 1, …, e n) m=1, …, k

λ 1 f 1 +…+λ k f k =(e 1, …, e n)[ λ 1 +…+ λ n ] то есть λ 1 f 1 +…+λ k f k = Θ ⇔

⇔ λ 1 +…+ λ n = что и требовалось доказать.

13. Размерность линейного пространства. Теорема о связи размерности и базиса.
Определение: Линейное пространство V называют n-мерным пространством, если в V существуют n линейно независимых элементов, а система из любых n+1 элементов пространства V линейно зависима. В этом случае n называется размерностью линейного пространства V и обозначается dimV=n.

Линейное пространство называют бесконечномерным, если ∀N ∈ ℕ в пространстве V существует линейно независимая система содержащая N элементов.

Теорема: 1) Если V – n-мерное линейное пространство, то любая упорядоченная система из n линейно независимых элементов этого пространства образует базис. 2)Если в линейном пространстве V существует базис состоящий из n элементов, то размерность V равна n (dimV=n).

Доказательство: 1) Пусть dimV=n ⇒ в V ∃ n линейно независимых элементов e 1, …,e n . Докажем, что эти элементы образуют базис, то есть докажем что ∀ x ∈ V может быть разложен по e 1, …,e n . Присоединим к ним x: e 1, …,e n , x – эта система содержит n+1 вектор а значит она линейно зависима. Поскольку e 1, …,e n – линейно независима, то по теореме 2 x линейно выражается через e 1, …,e n т.е. ∃ ,…, такие, что x= α 1 e 1 +…+ α n е n . Итак e 1, …,e n – базис пространства V. 2)Пусть e 1, …,e n – базис V, итак в V ∃ n линейно независимых элементов. Возьмем произвольные f 1 ,…,f n ,f n +1 ∈ V – n+1 элементов. Покажем их линейную зависимость. Разложим их по базису:

f m =(e 1, …,e n) = где m = 1,…,n Составим матрицу из столбцов координат: A= Матрица содержит n строк ⇒ RgA≤n. Число столбцов n+1 > n ≥ RgA ⇒ Столбцы матрицы A (т.е. стобцы координат f 1 ,…,f n ,f n +1) – линейно зависимы. Из леммы 1 ⇒ ,…,f n ,f n +1 – линейно зависимы ⇒ dimV=n.

Следствие: Если какой-либо базис содержит n элементов, то и любой другой базис этого пространства содержит n элементов.

Теорема 2: Если система векторов x 1 ,… ,x m -1 , x m – линейно зависима, а ее подсистема x 1 ,… ,x m -1 – линейно независима, то x m - линейно выражается через x 1 ,… ,x m -1

Доказательство: Т.к. x 1 ,… ,x m -1 , x m – линейно зависима, то ∃ , …, , ,

, …, | , | такие, что . Если , , …, | => x 1 ,… ,x m -1 – линейно независимы, чего быть не может. Значит m = (- ) x 1 +…+ (- ) x m -1.

Пусть функции , имеют производные предела (n-1).

Рассмотрим определитель: (1)

W(x) называется определителем Вронского для функций .

Теорема 1. Если функции линейно зависимы в интервале (a, b), то их вронскиан W(x) тождественно равен нулю в этом интервале.

Доказательство. По условию теоремы выполняется соотношение

, (2) где не все равны нулю. Пусть . Тогда

(3). Дифференцируем это тождество n-1 раз и,

Подставляя вместо их полученные значения в определитель Вронского,

получаем:

(4).

В определителе Вронского последний столбец является линейной комбинацией предыдущих n-1 столбцов и поэтому равен нулю во всех точках интервала (a, b).

Теорема 2. Если функции y1,…, yn являются линейно независимыми решениями уравнения L[y] = 0, все коэффициенты которого непрерывны в интервале (a, b), то вронскиан этих решений отличен от нуля в каждой точке интервала (a, b).

Доказательство. Допустим противное. Существует Х0, где W(Х0)=0. Составим систему n уравнений

(5).

Очевидно, что система (5) имеет ненулевое решение. Пусть (6).

Составим линейную комбинацию решений y1,…, yn.

У(х) является решением уравнения L[y] = 0. Кроме этого . В силу теоремы единственности решения уравнения L[y] = 0 с нулевыми начальными условиями может быть только нулевым, т. е. .

Мы получаем тождество , где не все равны нулю, а это означает, что y1,…, yn линейно зависимы, что противоречит условию теоремы. Следовательно, нет такой точки где W(Х0)=0.

На основе теоремы 1 и теоремы 2 можно сформулировать следующее утверждение. Для того, чтобы n решений уравнения L[y] = 0 были линейно независимы в интервале (a, b), необходимо и достаточно, чтобы их вронскиан не обращался в нуль ни в одной точке этого интервала.

Из доказанных теорем также следуют такие очевидные свойства вронскиана.

  1. Если вронскиан n решений уравнения L[y] = 0 равен нулю в одной точке х = х0 из интервала (a, b), в котором все коэффициенты рi(x) непрерывны, то он равен нулю во всех точках этого интервала.
  2. Если вронскиан n решений уравнения L[y] = 0 отличен от нуля в одной точке х = х0 из интервала (a, b), то он отличен от нуля во всех точках этого интервала.

Таким образом, для линейности n независимых решений уравнения L[y] = 0 в интервале (a, b), в котором коэффициенты уравнения рi(x) непрерывны, необходимо и достаточно, чтобы их вронскиан был отличен от нуля хоть в одной точке этого интервала.



error: Контент защищен !!