Ускорение

УскорениеУскорение. Следующий шаг на пути к уравнениям движения — это введение величины, которая связана с изменением скорости движения. Естественно спросить: а как изменяется скорость движения? В предыдущих главах мы рассматривали случай, когда действующая сила приводила к изменению скорости. Бывают легковые машины, которые набирают с места за 10 сек скорость 90 км/час. Зная это, мы можем определить, как изменяется скорость, но только в среднем. Займемся следующим более сложным вопросом: как узнать быстроту изменения скорости. Другими словами, на сколько метров в секунду изменяется скорость за 1 сек. Мы уже установили, что скорость падающего тела изменяется со временем по формуле υ = 9,8t (см. табл. 8.4), а теперь хотим выяснить, насколько она изменяется за 1 сек. Эта величина называется ускорением.

Таким образом, ускорение определяется как быстрота изменения скорости. Всем сказанным ранее мы уже достаточно подготовлены к тому, чтобы сразу записать ускорение в виде производной от скорости, точно так же как скорость записывается в виде производной от расстояния. Если теперь продифференцировать формулу υ = 9,8t, то получим ускорение падающего тела.

225(При дифференцировании этого выражения использовался результат, полученный нами раньше. Мы видели, что производная от Bt равна просто В (постоянной). Если же выбрать эту постоянную равной 9,8, то сразу находим, что производная от 9,8 t равна 9,8.) Это означает, что скорость падающего тела постоянно возрастает на 9,8 м/сек за каждую секунду. Этот же результат можно получить и из табл. 8.4. Как видите, в случае падающего тела все получается довольно просто, но ускорение, вообще говоря, непостоянно. Оно получилось постоянным только потому, что постоянна сила, действующая на падающее тело, а по закону Ньютона ускорение должно быть пропорционально силе.
В качестве следующего примера найдем ускорение в той задаче, с которой мы уже имели дело при изучении скорости!  s = At3 + Bt + С.

Для скорости υ = ds/dt мы получили формулу  υ = 3 At2 + B.
Так как ускорение — это производная скорости по времени, то для того, чтобы найти его значение, нужно продифференцировать эту формулу. Вспомним теперь одно из правил табл. 8.3, а именно что производная суммы равна сумме производных. Чтобы продифференцировать первый из этих членов, мы не будем проделывать всю длинную процедуру, которую делали раньше, а просто напомним, что такой квадратичный член встречался нам при дифференцировании функции 5t2, причем в результате коэффициент удваивался, a t2 превращалось в t. Вы можете сами убедиться в том, что то же самое произойдет и сейчас. Таким образом, производная от 3At2 будет равна 6At. Перейдем теперь к дифференцированию второго слагаемого. По одному из правил табл. 8.3 производная от постоянной будет нулем, следовательно, этот член не даст в ускорение никакого вклада. Окончательный результат: а = dυ/dt = 6At.
Выведем еще две полезные формулы, которые получаются интегрированием. Если тело из состояния покоя движется с постоянным ускорением g, то его скорость υ в любой момент времени t будет равна  υ = gt, а расстояние, пройденное им к этому моменту времени, s = 1/2 gt2
Заметим еще, что поскольку скорость — это ds/dt, а ускорение— производная скорости по времени, то можно написать

226Так что теперь мы знаем, как записывается вторая производная.
Существует, конечно, и обратная связь между ускорением и расстоянием, которая просто следует из того, что а = dυ/dt. Поскольку расстояние является интегралом от скорости, то оно может быть найдено двойным интегрированием ускорения.
Все предыдущее рассмотрение было посвящено движению в одном измерении, а теперь мы коротко остановимся на движении в пространстве трех измерений. Рассмотрим движение частицы Р в трехмерном пространстве. Эта глава началась с обсуждения одномерного движения легковой машины, а именно с вопроса, на каком расстоянии от начала движения находится машина в различные моменты времени. Затем мы обсуждали связь между скоростью и изменением расстояния со временем и связь между ускорением и изменением скорости. Давайте в той же последовательности разберем движение в трех измерениях. Проще, однако, начать с более наглядного двумерного случая, а уже потом обобщить его на случай трех измерений. Нарисуем две пересекающиеся под прямым углом линии (оси координат) и будем задавать положение частицы в любой момент времени расстояниями от нее до каждой из осей. Таким образом, положение частицы задается двумя числами (координатами) х и у, каждое из которых является соответственно расстоянием до оси у и до оси х (фиг. 8.3). Теперь мы можем описать движение, составляя, например, таблицу, в которой эти две координаты заданы как функции времени. (Обобщение на трехмерный случай требует введения еще одной оси, перпендикулярной двум первым, и измерения еще одной координаты z. Однако теперь расстояния берутся не до осей, а до координатных плоскостей.) Как определить скорость частицы? Для этого мы сначала найдем составляющие скорости по каждому направлению, или ее компоненты. Горизонтальная составляющая скорости, или x-компонента, будет равна производной по времени от координаты х, т. е.

227а вертикальная составляющая, или y-компонента, равна

228229В случае трех измерений необходимо еще добавить

230Как, зная компоненты скорости, определить полную скорость в направлении движения? Рассмотрим в двумерном случае два последовательных положения частицы, разделенных коротким интервалом времени ∆t = t2—t1 и расстоянием ∆s. Из фиг. 8.3 видно, что

231(Значок ≈ соответствует выражению «приблизительно равно».) Средняя скорость в течение интервала ∆t получается простым делением: ∆s/∆t. Чтобы найти точную скорость в момент t, нужно, как это уже делалось в начале главы, устремить ∆t к нулю. В результате оказывается, что

232В трехмерном случае точно таким же способом можно получить

233Ускорения мы определяем таким же образом, как и скорости: x-компонента ускорения ах определяется как производная от x-компоненты скорости υx (т. е. ах = d2x/dt2 —вторая производная по времени) и т. д.
Давайте рассмотрим еще один интересный пример смешанного движения на плоскости. Пусть шарик движется в горизонтальном направлении с постоянной скоростью u и в то же время падает вертикально вниз с постоянным ускорением g. Что это за движение? Так как υx = dx/dt = u и, следовательно, окорость υx постоянна, то

234

235

а поскольку ускорение движения вниз постоянно и равно — g, то координата у падающего шара дается формулой

236Какую же кривую описывает наш шарик, т. е. какая связь между координатами х и y? Из уравнения (8.18), согласно (8.17), можно исключить время, поскольку t = х/u, после чего находим

237Эту связь между координатами х и у можно рассматривать как уравнение траектории движения шарика. Если изобразить ее графически, то получим кривую, которая называется параболой (фиг. 8.4). Так. что любое свободно падающее тело, будучи брошенным в некотором направлении, движется по параболе.