Как сокращать алгебраические дроби. Как решать алгебраические дроби? Теория и практика Как решать примеры с алгебраическими дробями

Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.

Смысл сокращения алгебраической дроби

В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.

Сокращение алгебраической дроби представляет собой аналогичное действие.

Определение 1

Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.

К примеру, алгебраическая дробь 3 · x 2 + 6 · x · y 6 · x 3 · y + 12 · x 2 · y 2 может быть сокращена на число 3 , в итоге получим: x 2 + 2 · x · y 6 · x 3 · y + 12 · x 2 · y 2 . Эту же дробь мы можем сократить на переменную х, и это даст нам выражение 3 · x + 6 · y 6 · x 2 · y + 12 · x · y 2 . Также заданную дробь возможно сократить на одночлен 3 · x или любой из многочленов x + 2 · y , 3 · x + 6 · y , x 2 + 2 · x · y или 3 · x 2 + 6 · x · y .

Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.

Все ли алгебраические дроби подлежат сокращению?

Опять же из материалов об обыкновенных дробях мы знаем, что существуют сократимые и несократимые дроби. Несократимые – это дроби, не имеющие общих множителей числителя и знаменателя, отличных от 1 .

С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.

В общих случаях по заданному виду дроби довольно сложно понять, подлежит ли она сокращению. Конечно, в некоторых случаях наличие общего множителя числителя и знаменателя очевидно. Например, в алгебраической дроби 3 · x 2 3 · y совершенно понятно, что общим множителем является число 3 .

В дроби - x · y 5 · x · y · z 3 также мы сразу понимаем, что сократить ее возможно на х, или y , или на х · y . И все же гораздо чаще встречаются примеры алгебраических дробей, когда общий множитель числителя и знаменателя не так просто увидеть, а еще чаще – он попросту отсутствует.

Например, дробь x 3 - 1 x 2 - 1 мы можем сократить на х - 1 , при этом указанный общий множитель в записи отсутствует. А вот дробь x 3 - x 2 + x - 1 x 3 + x 2 + 4 · x + 4 подвергнуть действию сокращения невозможно, поскольку числитель и знаменатель не имеют общего множителя.

Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.

Правило сокращения алгебраических дробей

Правило сокращения алгебраических дробей состоит из двух последовательных действий:

  • нахождение общих множителей числителя и знаменателя;
  • в случае нахождения таковых осуществление непосредственно действия сокращения дроби.

Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.

Само действие сокращения алгебраической дроби базируется на основном свойстве алгебраической дроби, выражаемой равенством undefined , где a , b , c – некие многочлены, причем b и c – ненулевые. Первым шагом дробь приводится к виду a · c b · c , в котором мы сразу замечаем общий множитель c . Вторым шагом – выполняем сокращение, т.е. переход к дроби вида a b .

Характерные примеры

Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:

5 5 = 1 ; - 2 3 - 2 3 = 1 ; x x = 1 ; - 3 , 2 · x 3 - 3 , 2 · x 3 = 1 ; 1 2 · x - x 2 · y 1 2 · x - x 2 · y ;

Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).

К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105

Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 - 2 3 2 - 1 · 5 · 7 = 2 105

(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105

По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.

Пример 1

Задана алгебраическая дробь - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z . Необходимо произвести ее сокращение.

Решение

Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 · 3 · 3 · a · a · a · a · a · b · b · c · z 2 · 3 · a · a · b · b · c · c · c · c · c · c · c · z = = - 3 · 3 · a · a · a 2 · c · c · c · c · c · c = - 9 · a 3 2 · c 6

Однако, более рациональным способом будет запись решения в виде выражения со степенями:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 3 · a 5 · b 2 · c · z 2 · 3 · a 2 · b 2 · c 7 · z = - 3 3 2 · 3 · a 5 a 2 · b 2 b 2 · c c 7 · z z = = - 3 3 - 1 2 · a 5 - 2 1 · 1 · 1 c 7 - 1 · 1 = · - 3 2 · a 3 2 · c 6 = · - 9 · a 3 2 · c 6 .

Ответ: - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 9 · a 3 2 · c 6

Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).

Пример 2

Задана дробь 2 5 · x 0 , 3 · x 3 . Необходимо выполнить ее сокращение.

Решение

Возможно сократить дробь таким образом:

2 5 · x 0 , 3 · x 3 = 2 5 3 10 · x x 3 = 4 3 · 1 x 2 = 4 3 · x 2

Попробуем решить задачу иначе, предварительно избавившись от дробных коэффициентов – умножим числитель и знаменатель на наименьшее общее кратное знаменателей этих коэффициентов, т.е. на НОК (5 , 10) = 10 . Тогда получим:

2 5 · x 0 , 3 · x 3 = 10 · 2 5 · x 10 · 0 , 3 · x 3 = 4 · x 3 · x 3 = 4 3 · x 2 .

Ответ: 2 5 · x 0 , 3 · x 3 = 4 3 · x 2

Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.

Пример 3

Задана рациональная дробь 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 . Необходимо ее сократить.

Решение

Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49)

Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:

2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49) = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7)

Хорошо заметно, что возможно сократить дробь на общий множитель b 2 · (a + 7) . Произведем сокращение:

2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Краткое решение без пояснений запишем как цепочку равенств:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 a + 49) b 3 · (a 2 - 49) = = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Ответ: 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · a + 14 a · b - 7 · b .

Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.

Пример 4

Дана алгебраическая дробь 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 . Необходимо осуществить ее сокращение, если это возможно.

Решение

На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:

1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2

Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:

x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2 = x · - 2 7 · - 7 2 · 1 5 + x 2 · y 5 · x 2 · y - 1 5 · 3 1 2 = = - 2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10

Теперь становится виден общий множитель, осуществляем сокращение:

2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10 = - 2 7 · x 5 = - 2 35 · x

Ответ: 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = - 2 35 · x .

Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Другими словами, алгебраическая дробь - это деление двух многочленов, записанное с помощью дробной черты.

Любую алгебраическую дробь можно представить в виде выражения:

Примеры алгебраических дробей:

Сокращение алгебраических дробей

Основное свойство алгебраической дроби:

Если числитель и знаменатель алгебраической дроби умножить или разделить на один и тот же многочлен, то получится дробь, равная данной.

В виде буквенной формулы основное свойство алгебраической дроби можно записать так:

где c ≠0.

Используя основное свойство алгебраических дробей, выполняют их сокращение. Сокращение алгебраических дробей - это деление числителя и знаменателя дроби на их общий множитель.

Чтобы сократить алгебраическую дробь, надо числитель и знаменатель разложить на множители. Если числитель и знаменатель имеют общие множители, то дробь можно сократить. Если у числителя и знаменателя общих множителей нет, то дробь является несократимой.

Пример 1. Сократить дробь:

Пример 2. Упростить дробь:

Теперь стоит внимательно посмотреть на многочлены, заключённые в скобки:

a + b и b - a

Чтобы многочлен из знаменателя привести к тому же виду, что и у многочлена в числителе, надо поменять у многочлена b - a знак на противоположный и переставить члены местами:

b - a = -(-b + a ) = -(a - b )

Теперь и в числителе и в знаменателе у нас есть общий множитель, который можно сократить:

3(a + b ) = 3(a + b ) = - 3
x (b - a ) -x (a + b ) x

Пример 3. Сократите дробь:

24ab 3 c 5
16a 5 b 3 c

Решение: числитель и знаменатель дроби являются одночленами. Каждый одночлен - это произведение, состоящее из множителей, значит, можно сразу переходит к сокращению:

  • Начинаем с числового множителя. Числовые множители можно сократить на их наибольший общий делитель . Для чисел 24 и 16 - это число 8. После сокращения от 24 останется 3, а от 16 - 2.
  • Буквенные множители сокращаем на степень с наименьшим встречающимся показателем:
    • a и a 5 сокращаем на a . Единицу в числитель не пишем, а в знаменателе остаётся a 4 .
    • b 3 и b 3 сокращаем на b 3 , единицы в результат не записываем.
    • c 5 и c сокращаем на c , в числитель пишем c 4 , в знаменатель не пишем ничего.

Следовательно:

24ab 3 c 5 = 3c 4
16a 5 b 3 c 2a 4

Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика:Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень

Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень

Умножение алгебраических дробей осуществляется по тому же правилу, что и умножение обыкновенных дробей :

Аналогично обстоит дело с делением алгебраических дробей, с возведением алгебраической дроби в натуральную степень. Правило деления выглядит так:

а правило возведения в степень

Прежде чем выполнять умножение и деление алгебраических дробей, полезно их числители и знаменатели разложить на множители - это облегчит сокращение той алгебраической дроби, которая получится в результате умножения или деления.

Пример 1. Выполнить действия:

Воспользуемся тем, что (b — а) 2 = (а — b) 2 . Получим

Мы учли, что в результате деления а — b на b — а получится -1.
Впрочем, знак «-» в данном случае лучше переместить в знаменатель:

Пример З. Выполнить действия:


Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Математика за 8 класс бесплатно скачать, планы конспектов уроков, готовимся к школе онлайн

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Алгебраические дроби. Сокращение алгебраических дробей

Прежде чем перейти к изучению алгебраических дробей рекомендуем вспомнить, как работать с обыкновенными дробями.

Любая дробь, в которой есть буквенный множитель, называется алгебраической дробью.

Примеры алгебраических дробей .

Как и у обыкновенной дроби, в алгебраической дроби есть числитель (наверху) и знаменатель (внизу).

Сокращение алгебраической дроби

Алгебраическую дробь можно сокращать . При сокращении пользуются правилами сокращения обыкновенных дробей.

Напоминаем, что при сокращении обыкновенной дроби мы делили и числитель, и знаменатель на одно и тоже число.

Алгебраическую дробь сокращают таким же образом, но только числитель и знаменатель делят на один и тот же многочлен.

Рассмотрим пример сокращения алгебраической дроби .

Определим наименьшую степень, в которой стоит одночлен « a » . Наименьшая степень для одночлена « a » находится в знаменателе - это вторая степень.

Разделим, и числитель, и знаменатель на « a 2 ». При делении одночленов используем свойство степени частного.

Напоминаем, что любая буква или число в нулевой степени - это единица.

Нет необходимости каждый раз подробно записывать, на что сокращали алгебраическую дробь. Достаточно держать в уме степень, на которую сокращали, и записывать только результат.

Краткая запись сокращения алгебраической дроби выглядит следующим образом.

Сокращать можно только одинаковые буквенные множители.

Нельзя сокращать

Можно сокращать

Другие примеры сокращения алгебраических дробей.

Как сократить дробь с многочленами

Рассмотрим другой пример алгебраической дроби. Требуется сократить алгебраическую дробь, у которой в числителе стоит многочлен.

Сокращать многочлен в скобках можно только с точно таким же многочленом в скобках!

Ни в коем случае нельзя сокращать часть многочлена внутри скобок!

Определить, где заканчивается многочлен, очень просто. Между многочленами может быть только знак умножения. Весь многочлен находится внутри скобок.

После того, как мы определили многочлены алгебраической дроби, сократим многочлен « (m − n) » в числителе с многочленом « (m − n) » в знаменателе.

Примеры сокращения алгебраических дробей с многочленами.

Вынесение общего множителя при сокращении дробей

Чтобы в алгебраических дробях появились одинаковые многочлены иногда нужно вынести общий множитель за скобки.

В таком виде сократить алгебраическую дробь нельзя, так как многочлен
« (3f + k) » можно сократить только со многочленом « (3f + k) ».

Поэтому, чтобы в числителе получить « (3f + k) », вынесем общий множитель « 5 ».

Сокращение дробей с помощью формул сокращенного умножения

В других примерах для сокращения алгебраических дробей требуется
применение формул сокращенного умножения.

В первоначальном виде сократить алгебраическую дробь нельзя, так как нет одинаковых многочленов.

Но если применить формулу разности квадратов для многочлена « (a 2 − b 2) », то одинаковые многочлены появятся.

Другие примеры сокращения алгебраических дробей с помощью формул сокращенного умножения.

Умножение алгебраических дробей

При умножении алгебраических дробей используют правила умножения обыкновенных дробей.

Правило умножения алгебраических дробей

При умножении алгебраических дробей
числитель умножается на числитель, а знаменатель - на знаменатель.

Рассмотрим пример умножения алгебраических дробей .

При сокращении алгебраических дробей используют правила сокращения алгебраических дробей.

Рассмотрим еще один пример умножения алгебраических дробей, которые содержат многочлены и в числителе, и в знаменателе.

При умножении алгебраических дробей, которые содержат многочлены и в числителе, и в знаменателе, заключайте многочлены в скобки целиком.

Неправильно

Как умножить алгебраическую дробь на одночлен (букву)

Рассмотрим пример умножения алгебраической дроби на одночлен.

Представим одночлен « 21z 5 » как алгебраическую дробь со знаменателем « 1 ». Это можно сделать, так как при делении на « 1 » получается тот же самый одночлен.

При умножении алгебраической дроби не забывайте использовать правило знаков.

Рассмотрим пример умножения двух отрицательных алгебраических дробей.

Перед тем как перемножить алгебраические дроби, определим итоговый знак по правилу знаков: « минус на минус дает плюс ».

Значит, итоговым знаком произведения будет знак « + ».

Методическая разработка по теме «Алгебраические дроби». 7-й класс

Разделы: Математика

Данный урок проводился в конце изучения темы “Алгебраические дроби” с целью повторения и закрепления знаний основных алгоритмов преобразований и действий с алгебраическими дробями.

Тема методической разработки.

Методика организации урока обобщения и систематизации знаний в соответствии с требованиями новых ФГОС.

Цели методической разработки .

Использование различных видов деятельности учащихся, применение элементов современных педагогических технологий (метапредметной технологии, технологии разноуровневого обучения, проблемно-развивающего обучения, коллективной работы, работы в парах).

Методическое обоснование темы.

Изучение темы “Алгебраические дроби” вызывает затруднения у многих учащихся, особенно, сложение и вычитание алгебраических дробей. Умение выполнять преобразования с алгебраическими дробями предполагает наличие знаний и умений учащихся по предыдущим темам, изучаемым в 7-м классе: “Алгебраические выражения”, “Одночлены и многочлены”, “Разложение многочлена на множители”, а также правил действия с обыкновенными дробями и др.

Решение многих теоретических и практических задач сводится к составлению математических моделей в виде алгебраических выражений, включающих алгебраические дроби. Приобретая опыт работы с такими моделями, учащиеся могут использовать этот опыт при изучении других предметов в школе и в практической жизни.

Сложность данной темы и ее важность для развития метапредметных умений учащихся очевидны и требуют особенно внимательного подхода к ее изучению с учетом введения в школе новых образовательных стандартов.

На изучение темы “Алгебраические дроби” по учебнику Алимова Ш.А по программе выделяется 22 часа. Из них 5 часов – на тему “Совместные действия с алгебраическими дробями”. Рассматриваемый урок рекомендуется проводить в завершение изучения данной темы перед контрольной работой.

Учитывая математическую подготовленность класса, можно варьировать объем самостоятельной работы учащихся, допуская повторение изученных алгоритмов действий с алгебраическими дробями по учебнику.

Тема урока: “Алгебраические дроби”

Тип урока: Урок повторения, систематизации и обобщения знаний, закрепления умений .

Вид урока: Урок-соревнование.

Формы работы на уроке: Коллективная, индивидуальная, в парах, в диалоге.

Цель методическая: Более глубокое усвоение, обобщение и систематизация знаний по теме “Алгебраические дроби” для обеспечения возможности их осмысленного использования учащимися вне урока математики.

  • Обучения: Закрепление знаний, отработка навыков использования формул сокращенного умножения, приемов разложения многочленов на множители, правил преобразования, совместных действий над алгебраическими дробями. Обобщение материала по теме.
  • Развития: Создание условий, обеспечивающих активную познавательную позицию учеников на уроке путем использования различных видов опроса, самостоятельной работы, межпредметной связи, развитие умений объяснять особенности, закономерности, анализировать, сопоставлять, сравнивать.
  • Воспитания: Воспитание самооценки, самоконтроля в ходе самостоятельного выбора уровня сложности заданий. Воспитание общей культуры труда.
  • Материально-техническое обеспечение урока: карточки с разноуровневыми заданиями, жетоны (синие – 1 балл, зеленые – 2 балла, красные – 3 балла), компьютерная техника (компьютер, мультимедийный проектор, мобильный экран).

    • Постановка цели урока и мотивация учебной деятельности учащихся (презентация учителя).
    • Воспроизведение и коррекция опорных знаний по теме “Алгебраические дроби”, включающей операции сокращения, сложения и вычитания, умножения и деления алгебраических дробей, а также совместные действия с алгебраическими дробями. Сопоставление алгоритмов действий с обыкновенными и алгебраическими дробями. Решение заданий различной степени сложности.
    • Релаксационная пауза (включается в ход урока после повторения темы “Сложение и вычитание алгебраических дробей”).
    • Решение задачи, показывающей межпредметную связь.
    • Подведение итогов урока.
    • Домашнее задание.
    • 1. Вступительное слово учителя

      Сегодня на уроке мы повторим большую тему “Алгебраические дроби”, подготовимся к контрольной работе и постараемся понять, зачем нам нужны знания по данной теме.

      Наш урок пройдет в виде соревнования за личное первенство. В ходе работы на уроке каждый из вас может “заработать” баллы за правильно выполненные задания, ответы и получить соответствующую оценку.

      Давайте попытаемся ответить на вопросы:

    • Что такое алгебраическая дробь?
    • Какие операции производят с алгебраическими дробями?
    • Математическая модель. Что это такое?
    • Где используются алгебраические дроби?
    • Учащиеся отвечают на вопросы.

      Правильно оценить ответы нам поможет презентация учителя “В мире алгебраических дробей” (Приложение 1) .

      Какой выводы мы можем сделать после просмотра презентации?

      Учащиеся высказывают свои мнения.

    • Алгебраические дроби используются не только на уроках математики, но и во многих сферах деятельности человека.
    • Для применения алгебраических дробей необходимо научиться правильно оперировать ими: выполнять сокращение, сложение, вычитание, умножение, деление.
    • 2. Повторение темы: “Алгебраическая дробь. Сокращение алгебраических дробей”.

      2.1. Дифференцированный опрос у доски по карточкам:

      2.2. Во время подготовки отвечающих у доски – фронтальный опрос (за каждый правильный ответ – 1 балл):

    • Дать определение алгебраической дроби.
    • Как найти ее числовое значение?
    • Любое ли значение могут принимать буквы, входящие в алгебраическую дробь?
    • В чем заключается основное свойство дроби?
    • Что значит сократить обыкновенную дробь?
    • Что значит сократить алгебраическую дробь?
    • Отличаются ли правила сокращения обыкновенных и алгебраических дробей?
    • Какие способы разложения многочлена на множители вы знаете?
    • Учитель подводит итог:

      Правила сокращения обыкновенных и алгебраических дробей аналогичны.

      2.3. Слушаем, дополняем пояснениями, оцениваем ответы учеников, стоящих у доски.
      За правильные дополнительные ответы учащиеся получают жетоны (баллы).

      Проверку правильности решения делают учащиеся, работая в парах.

      3. Повторение темы: “Сложение и вычитание алгебраических дробей”

      3.1. Индивидуальный дифференцированный опрос по карточкам на доске. Выбор сложности задания осуществляется по желанию. Время выполнения – 10 минут.

      Ответы появляются на мобильном экране позже (во время проверки).

      3.2. Во время подготовки учащихся по карточкам класс пишет диктант. Диктант составлен из выполненных упражнений. Задания предъявляются на мобильном экране (ответы – позже). В решении некоторых из них допущены ошибки. Выполненные задания записать в тетрадь. Если задание выполнено правильно, давать краткий ответ: “Да”, если неправильно: “Нет”. Выделять место появления ошибки (карандашом).

      Проверку правильности решения делают учащиеся, работая в парах. Правильные ответы объявляет учитель.

      3.3. Слушаем, дополняем, комментируем ответы учеников, выполняющих задания на доске. Повторяем правила сложения и вычитания алгебраических дробей. За правильные дополнения учащиеся получают жетоны (баллы).

      Вопрос: Что вы можете сказать, сравнив правила сложения обыкновенных и алгебраических дробей?

      Ответ: Да, правила сложения обыкновенных и алгебраических дробей аналогичны.

      4. Релаксационная пауза.

      Выполняем упражнения для расслабления глаз. Сядьте прямо. Прикройте глаза ладонями, опустите веки. Попытайтесь вспомнить что-нибудь приятное, например, море, звездное небо, речную гладь. Даже за 15–30 секунд ваши глаза немного отдохнут.

      5. Повторение темы: “Умножение и деление алгебраических дробей”.

      5.1. Индивидуальный дифференцированный опрос по карточкам:

      Примеры под цифрой 1) предложить для решения у доски, под цифрой 2) – самостоятельно, выбирая по желанию один пример из трех.

      Слушаем, дополняем, комментируем ответы учеников, выполняющих задания на доске. За правильные дополнения учащиеся получают жетоны (баллы).

      5.2. Перекрестный опрос:

    • Правило умножения алгебраических дробей (1 балл).
    • Правило деления алгебраических дробей (1 балл).
    • Правило возведения в степень алгебраической дроби (1 балл).
    • Правила умножения, деления, возведения в степень обыкновенных дробей.

    Вопрос: Какой вывод вы можете сделать?

    Ответ: Да, правила умножения и деления обыкновенных и алгебраических дробей аналогичны.

    6. Повторение темы: “Совместные действия над алгебраическими дробями”.

    Вопросы для повторения:

  • Как устанавливается порядок действий в числовом выражении?
  • Как устанавливается порядок действий в алгебраическом выражении?
  • Какие способы записи решения при выполнении совместных действий над алгебраическими дробями вы знаете?

Предварительная работа – в парах, затем – фронтальный опрос.

Самостоятельная работа. Выполнить действия:

Время работы ограничено. Выбор заданий – по желанию, после предъявления правильных ответов учащиеся делают самопроверку самостоятельной работы.

7. Задача и учебника № 518 – как пример использования межпредметной связи.

Сопротивление R участка цепи, состоящего из двух параллельно соединенных проводников, вычисляется по формуле:

8. Подведение итогов:

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

После полученных начальных сведений о дробях перейдем к действиям с алгебраическими дробями. С ними можно выполнять любые действия вплоть до возведения в степень. При их выполнении мы в итоге получаем алгебраическую дробь. Все пункты необходимо разбирать последовательно.

Действия с алгебраическими дробями аналогичны действиям с обыкновенными дробями. Поэтому стоит отметить, что правила являются совпадающими при любых выполняемых с ними действиями.

Сложение алгебраических дробей

Сложение может выполняться в двух случаях: при одинаковых знаменателях, при наличии разных знаменателей.

Если необходимо произвести сложение дробей с одинаковыми знаменателями, нужно сложить числители, а знаменатель оставить без изменения. Это правило позволяет воспользоваться сложением дробей и многочленов, которые находятся в числителях. Получим, что

a 2 + a · b a · b - 5 + 2 · a · b + 3 a · b - 5 + 2 · b 4 - 4 a · b - 5 = a 2 + a · b + 2 · a · b + 3 + 2 · b 4 - 4 a · b - 5 = = a 2 + 3 · a · b - 1 + 2 · b 4 a · b - 5

Если имеются числители дроби с разными числителями, тогда необходимо применить правило: воспользоваться приведением к общему знаменателю, выполнить сложение полученных дробей.

Пример 1

Нужно произвести сложение дробей x x 2 - 1 и 3 x 2 - x

Решение

Приводим к общему знаменателю вида x 2 x · x - 1 · x + 1 и 3 · x + 3 x · (x - 1) · (x + 1) .

Выполним сложение и получим, что

x 2 x · (x - 1) · (x + 1) + 3 · x + 3 x · (x - 1) · (x + 1) = x 2 + 3 · x + 3 x · (x - 1) · (x + 1) = x 2 + 3 · x + 3 x 3 - x

Ответ: x 2 + 3 · x + 3 x 3 - x

Статья о сложении и вычитании таких дробей имеет подробную информацию, где подробно описано каждое действие, производимое над дробями. При выполнении сложения возможно появление сократимой дроби.

Вычитание

Вычитание выполняется аналогично сложению. При одинаковых знаменателях действия выполняются только в числителе, знаменатель остается неизменным. При различных знаменателях выполняется приведение к общему. Только после этого можно приступать к вычислениям.

Пример 2

Перейдем к вычитанию дробей a + 5 a 2 + 2 и 1 - 2 · a 2 + a a 2 + 2 .

Решение

Видно, что знаменатели идентичны, что означает a + 5 a 2 + 2 - 1 - 2 · a 2 + a a 2 + 2 = a + 5 - (1 - 2 · a 2 + a) a 2 + 2 = 2 · a 2 + 4 a 2 + 2 .

Произведем сокращение дроби 2 · a 2 + 4 a 2 + 2 = 2 · a 2 + 2 a 2 + 2 = 2 .

Ответ: 2

Пример 3

Выполним вычитание 4 5 · x и 3 x - 1 .

Решение

Знаменатели разные, поэтому приведем к общему 5 · x · (x - 1) , получаем 4 5 · x = 4 · x - 1 5 · x · (x - 1) = 4 · x - 4 5 · x · (x - 1) и 3 x - 1 = 3 · 5 · x (x - 1) · 5 · x = 15 · x 5 · x · (x - 1) .

Теперь выполним

4 5 · x - 3 x - 1 = 4 · x - 4 5 · x · (x - 1) - 15 · x 5 · x · (x - 1) = 4 · x - 4 - 15 · x 5 · x · (x - 1) = = - 4 - 11 · x 5 · x · (x - 1) = - 4 - 11 · x 5 · x 2 - 5 · x

Ответ: - 4 - 11 · x 5 · x 2 - 5 · x

Детальная информация указана в статье о сложении и вычитании алгебраических дробей.

Умножение алгебраических дробей

С дробями можно производить умножение аналогичное умножению обыкновенных дробей: для того, чтобы умножить дроби, необходимо произвести умножение числителей и знаменателей отдельно.

Рассмотрим пример такого плана.

Пример 4

При умножении 2 x + 2 на x - x · y y из правила получаем, что 2 x + 2 · x - x · y y = 2 · (x - x · y) (x + 2) · y .

Теперь необходимо выполнить преобразования, то есть умножить одночлен на многочлен. Получаем, что

2 · x - x · y (x + 2) · y = 2 · x - 2 · x · y x · y + 2 · y

Предварительно следует произвести разложение дроби на многочлены для того, чтобы упростить дробь. После можно производить сокращение. Имеем, что

2 · x 3 - 8 · x 3 · x · y - y · 6 · y 5 x 2 + 2 · x = 2 · x · (x - 2) · (x + 2) y · (3 · x - 1) · 6 · y 5 x · (x + 2) = = 2 · x · (x - 2) · (x + 2) · 6 · y 5 y · (3 · x - 1) · x · x + 2 = 12 · (x - 2) · y 4 3 · x - 1 = 12 · x · y 4 - 24 · y 4 3 · x - 1

Подробное рассмотрение данного действия можно найти в статье умножения и деления дробей.

Деление

Рассмотрим деление с алгебраическими дробями. Применим правило: для того, чтобы разделить дроби, необходимо первую умножить на обратную вторую.

Дробь, которая обратная данной считается дробь с поменянными местами числителем и знаменателем. То есть, эта дробь называется взаимообратной.

Рассмотрим пример.

Пример 5

Выполнить деление x 2 - x · y 9 · y 2: 2 · x 3 · y .

Решение

Тогда обратная 2 · x 3 · y дробь запишется как 3 · y 2 · x . Значит, получим, что x 2 - x · y 9 · y 2: 2 · x 3 · y = x 2 - x · y 9 · y 2 · 3 · y 2 · x = x · x - y · 3 · y 9 · y 2 · 2 · x = x - y 6 · y .

Ответ: x 2 - x · y 9 · y 2: 2 · x 3 · y = x - y 6 · y

Возведение алгебраической дроби в степень

Если имеется натуральная степень, тогда необходимо применять правило действий с возведением в натуральную степень. При таких вычислениях используем правило: при возведении в степень нужно числитель и знаменатель отдельно возводить в степени, после чего записать результат.

Пример 6

Рассмотрим на примере дроби 2 · x x - y . Если необходимо возвести ее в степень равную 2 , тогда выполняем действия: 2 · x x - y 2 = 2 · x 2 (x - y) 2 . После чего возводим в степень получившийся одночлен. Выполнив действия, получим, что дроби примет вид 4 · x 2 x 2 - 2 · x · y + y 2 .

Детальное решение подобных примеров рассматривается в статье про возведение алгебраической дроби в степень.

При работе со степенью дроби необходимо помнить, что числитель и знаменатель отдельно возводятся в степень. Это заметно упрощает процесс решения и дальнейшего упрощения дроби. Стоит обращать внимание и на знак перед степенью. Если имеется знак «минус», то такую дробь следует переворачивать для простоты вычисления.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



error: Контент защищен !!