Уравнение данной линии. Уравнение. Параметрические уравнения линии

Давайте повторим * Какое уравнение называется квадратным? * Какие уравнения называются неполными квадратными уравнениями? * Какое квадратное уравнение называется приведенным? * Что называют корнем квадратного уравнения? * Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение?
















Алгоритм решения квадратного уравнения: 1. Опредилить каким способом рациональней решить квадратное уравнение 2. Выбрать наиболее рациональный способ решения 3. Определение количества корней квадратного уравнения 4. Нахождение корней квадратного уравнения Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу…






Дополнительное условие Уравнение Корни Примеры 1. в = с = 0, а 0 ах 2 = 0 х 1 = 0 2. с = 0, а 0, в 0 ах 2 + bх = 0 х 1 = 0, х 2 =-b/а 3. в = 0, а 0, в 0 ах 2 + с = 0 а) х 1,2 = ±(c/а), где с/а 0. б) если с/а 0, то решений нет 4. а 0 ах 2 + bх + с = 0 x 1,2 =(-b±D)/2 а, где D = в 2 – 4 ас, D0 5. в – четное число (в = 2k), а 0, в 0, с 0 ах 2 + 2kx + c = 0 х 1,2 =(-b±D)/а, D 1 = k 2 – ac, где k = 6. Теорема обратная теореме Виета x 2 + px + q = 0x 1 + x 2 = - p x 1 x 2 = q


II. Специальные методы 7. Метод выделения квадрата двучлена. Цель: Привести уравнение общего вида к неполному квадратному уравнению. Замечание: метод применим для любых квадратных уравнений, но не всегда удобен в использовании. Используется для доказательства формулы корней квадратного уравнения. Пример: решите уравнение х 2 -6 х+8=0 8. Метод «переброски» старшего коэффициента. Корни квадратных уравнений ax 2 + bx + c = 0 и y 2 +by+ac=0 связаны соотношениями: и Замечание: метод хорош для квадратных уравнений с «удобными» коэффициентами. В некоторых случаях позволяет решить квадратное уравнение устно. Пример: решите уравнение 2 х 2 -9 х-5=0 На основании теорем:Пример: решите уравнение 157 х х-177=0 9. Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен с /а 10. Если в квадратном уравнении a+c=b, то один из корней равен -1, а второй по теореме Виета равен –с/а Пример: решите уравнение 203 х х+17=0 х 1 =у 1 /а, х 2 =у 2 /а


III. Общие методы решения уравнений 11. Метод разложения на множители. Цель: Привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Способы: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Пример: решите уравнение 3 х 2 +2 х-1=0 12. Метод введения новой переменной. Удачный выбор новой переменной делает структуру уравнения более прозрачной Пример: решите уравнение (х 2 +3 х-25) 2 -6(х 2 +3 х-25)= - 8









Рассмотрим соотношение вида F(x, y)=0 , связывающее переменные величины x и у . Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у . Примеры уравнений: 2х + 3у = 0, х 2 + у 2 – 25 = 0,

sin x + sin y – 1 = 0.

Если (1) справедливо для всех пар чисел х и у, то оно называется тождеством . Примеры тождеств: (х + у) 2 - х 2 - 2ху - у 2 = 0, (х + у)(х - у) - х 2 + у 2 = 0.

Уравнение (1) будем называть уравнением множества точек (х; у), если этому уравнению удовлетворяют координаты х и у любой точки множества и не удовлетворяют координаты никакой точки, не принадлежащие этому множеству.

Важным понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия α.


Определение. Уравнение (1) называется уравнением линии α (в созданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии α , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Если (1) является уравнением линии α, то будем говорить, что уравнение (1) определяет (задает) линию α.

Линия α может определятся не только уравнением вида (1), но и уравнением вида

F (P, φ) = 0 , содержащим полярные координаты.

  • уравнение прямой с угловым коэффициентом;

Пусть дана некоторая прямая, не перпендикулярная, оси ОХ . Назовем углом наклона данной прямой к оси ОХ угол α , на который нужно повернуть ось ОХ , чтобы положительное направление совпало с одним из направлений прямой. Тангенс угла наклона прямой к оси ОХ называют угловым коэффициентом этой прямой и обозначают буквой К .

К=tg α
(1)

Выведем уравнение данной прямой, если известны ее К и величина в отрезке ОВ , которой она отсекает на оси ОУ .

(2)
y=kx+b
Обозначим через М " точку плоскости (х; у). Если провести прямые BN и NM , параллельные осям, то образуются r BNM – прямоугольный. Т. MC C BM <=>, когда величины NM и BN удовлетворяют условию: . Но NM=CM-CN=CM-OB=y-b, BN=x => учитывая (1), получаем, что точка М (х; у) С на данной прямой <=>, когда ее координаты удовлетворяют уравнению: =>

Уравнение (2) называют уравнением прямой с угловым коэффициентом. Если K=0 , то прямая параллельна оси ОХ и ее уравнение имеет вид y = b.

  • уравнение прямой, проходящей через две точки;
(4)
Пусть даны две точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Приняв в (3) точку М (х; у) за М 2 (х 2 ; у 2), получим у 2 -у 1 =k(х 2 - х 1). Определяя k из последнего равенства и подставляя его в уравнение (3), получаем искомое уравнение прямой: . Это уравнение, если у 1 ≠ у 2 , можно записать в виде:

Если у 1 = у 2 , то уравнение искомой прямой имеет вид у = у 1 . В этом случае прямая параллельна оси ОХ . Если х 1 = х 2 , то прямая, проходящая через точки М 1 и М 2 , параллельна оси ОУ , ее уравнение имеет вид х = х 1 .

  • уравнение прямой, проходящей через заданную точку с данным угловым коэффициентом;
(3)
Аx + Вy + С = 0
Теорема. В прямоугольной системе координат Оху любая прямая задается уравнением первой степени:

и, обратно, уравнение (5) при произвольных коэффициентах А, В, С (А и В ≠ 0 одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство.

Сначала докажем первое утверждение. Если прямая не перпендикулярна Ох, то она определяется уравнением первой степени: у = kx + b , т.е. уравнением вида (5), где

A = k, B = -1 и C = b. Если прямая перпендикулярна Ох, то все ее точки имеют одинаковые абсциссы, равные величине α отрезка, отсекаемого прямой на оси Ох.

Уравнение этой прямой имеет вид х = α, т.е. также является уравнение первой степени вида (5), где А = 1, В = 0, С = - α. Тем самым доказано первое утверждение.

Докажем обратное утверждение. Пусть дано уравнение (5), причем хотя бы один из коэффициентов А и В ≠ 0 .

Если В ≠ 0 , то (5) можно записать в виде . Пологая , получаем уравнение у = kx + b , т.е. уравнение вида (2) которое определяет прямую.

Если В = 0 , то А ≠ 0 и (5) принимает вид . Обозначая через α, получаем

х = α , т.е. уравнение прямой перпендикулярное Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка.

Уравнение вида Ах + Ву + С = 0 является неполным, т.е. какой – то из коэффициентов равен нулю.

1) С = 0; Ах + Ву = 0 и определяет прямую, проходящую через начало координат.

2) В = 0 (А ≠ 0) ; уравнение Ах + С = 0 Оу.

3) А = 0 (В ≠ 0) ; Ву + С = 0 и определяет прямую параллельную Ох.

Уравнение (6) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения удобна для геометрического построения прямой.

  • нормальное уравнение прямой;

Аx + Вy + С = 0 – общее уравнение некоторой прямой, а (5) x cos α + y sin α – p = 0 (7)

ее нормальное уравнение.

Так как уравнение (5) и (7) определяют одну и ту же прямую, то (А 1х + В 1у + С 1 = 0 и

А 2х + В 2у + С 2 = 0 => ) коэффициенты этих уравнений пропорциональны. Это означает, что помножив все члены уравнения (5) на некоторый множитель М, мы получим уравнение МА х + МВ у + МС = 0 , совпадающее с уравнением (7) т.е.

МА = cos α, MB = sin α, MC = - P (8)

Чтобы найти множитель М, возведем первые два из этих равенств в квадрат и сложим:

М 2 (А 2 + В 2) = cos 2 α + sin 2 α = 1

Равенство вида F(x, y) = 0 называется уравнением с двумя переменными x , у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа x = x 0 , у=у 0, удовлетворяют некоторому уравнению вида F(х, у)=0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(х, у) = 0» мы часто будем говорить короче: дана линия F (х, у) = 0.

Если даны уравнения двух линий F (х, у) = 0 и Ф(х, y) = Q, то совме­стное решение системы

даёт все точки их пересечения. Точнее, каждая пара чисел, являющаяся сов­местным решением этой системы, определяет одну из точек пересечения.

*) В тех случаях, когда система координат не названа, подразумевается, что она - декартова прямоугольная.

157. Даны точки *) M 1 (2; - 2), M 2 (2; 2), M 3 (2; - 1), M 4 (3; -3), M 5 (5; -5), M 6 (3; -2). Установить, какие изданных точек лежат на линии, определённой уравнением х + у = 0, и какие не лежат на ней. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

158. На линии, определённой уравнением х 2 +y 2 =25, найти точки, абсциссы которых равны следующим числам: а) 0, б) - 3, в) 5, г) 7; на этой же линии найти точки, ординаты которых равны следующим числам: д) 3, е) - 5, ж) - 8. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

159. Установить, какие линии определяются следующими уравне­ниями (построить их на чертеже):

1) х - у = 0; 2) х + у = 0; 3) x - 2 = 0; 4) x + 3 = 0;

5) у - 5 = 0; 6) y + 2 = 0; 7) x = 0; 8) y = 0;

9) x 2 - xy = 0; 10) xy + y 2 = 0; 11) x 2 - y 2 = 0; 12) xy = 0;

13) y 2 - 9 = 0; 14) xy 2 - 8 xy +15 = 0; 15) y 2 +5y+4 = 0;

16) х 2 у - 7ху + 10y = 0; 17) у = |x |; 18) х = |у |; 19) y + |x |=0;

20) х + |у |= 0; 21) у = |х- 1|; 22) y = |x + 2|; 23) х 2 + у 2 = 16;

24) (x -2) 2 +(y -1) 2 =16; 25) (x + 5) 2 +(y - 1) 2 = 9;

26) (х - 1) 2 + y 2 = 4; 27) x 2 +(y + 3) 2 = 1; 28) (x -3) 2 + y 2 = 0;

29) х 2 + 2y 2 = 0; 30) 2 х 2 + 3y 2 + 5 = 0

31) (x - 2) 2 + (y + 3) 2 + 1=0.

160.Даны линии:

1) х + у = 0; 2) х - у = 0; 3) x 2 + y 2 - 36 = 0;

4) x 2 +y 2 -2x ==0; 5) x 2 +y 2 + 4x -6y -1 =0.

Определить, какие из них проходят через начало координат.

161.Даны линии:

1) x 2 + y 2 = 49; 2) (x - 3) 2 + (y + 4) 2 = 25;

3) (x + 6) 2 + (y - 3) 2 = 25; 4) (x + 5) 2 + (y - 4) 2 = 9;

5) x 2 + y 2 - 12х + 16у = 0; 6) x 2 + y 2 - 2х + 8у + 7 = 0;

7) x 2 + y 2 - 6х + 4у + 12 = 0.

Найти точки их пересечения: а) с осью Ох; б) с осью Оу.

162.Найти точки пересечения двух линий;

1) х 2 2 = 8, х-у = 0;

2) х 2 2 -16x +4у +18 = 0, х + у = 0;

3) х 2 2 -2x +4у -3 = 0, х 2 + у 2 = 25;

4) х 2 2 -8x +10у+40 = 0, х 2 + у 2 = 4.

163. В полярной системе координат даны точки

М 1 (1; ), М 2 (2; 0), М 3 (2; )

М 4 (
;) и М 5 (1; )

Установить, какие из этих точек лежат на линии, определённой уравнением в полярных координатах  = 2 cos , и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить её на чертеже:)

164. На линии, определённой уравнением  = , найти точки, полярные углы которых равны следующим числам: а) ,б) -, в) 0,г) . Какая линия определена данным уравнением?

(Построить её на чертеже.)

165.На линии, определённой уравнением  = , найти точки,полярные радиусы которых равны следующим числам: а) 1, б) 2,в)
. Какая линия определена данным уравнением? (Построить её на чертеже.)

166.Установить, какие линии определяются в полярных коор­динатах следующими уравнениями (построить их на чертеже):

1)  = 5; 2)  = ; 3)  = ; 4)  cos  = 2; 5)  sin  = 1;

6)  = 6 cos ; 7)  = 10 sin ; 8) sin  = 9) sin  =

167.Построить на чертеже следующие спирали Архимеда:

1)  = 5, 2)  = 5; 3)  = ; 4)р = -1.

168. Построить на чертеже следующие гиперболические спирали:

1)  = ; 2) = ; 3) = ; 4) = -.

169. Построить на чертеже следующие логарифмические спирали:

,
.

170.Определить длины отрезков, на которые рассекает спиральАрхимеда

луч, выходящий из полюса и наклонённый к полярной оси под углом
. Сделать чертёж.

171. На спирали Архимеда
взята точка С, полярный радиус которой равен 47. Определить, на сколько частей эта спираль рассекает полярный радиус точки С, Сделать чертёж.

172. На гиперболической спирали
найти точку Р, полярный радиус которой равен 12. Сделать чертёж.

173. На логарифмической спирали
найти точку Q, полярный радиус которой равен 81. Сделать чертёж.

Линия на плоскости есть совокупность точек этой плоскости, обладающих определенными свойствами, при этом точки, не лежащие на данной линии, этими свойствами не обладают. Уравнение линии определяет аналитически выраженное соотношение между координатами точек, лежащих на этой линии. Пусть это соотношение задано уравнением

F(x,y )=0. (2.1)

Пара чисел, удовлетворяющая (2.1), – не произвольная: если х задано, то у не может быть каким угодно, значение у связано с х . При изменении х изменяется у , и точка с координатами (х,у ) описывает данную линию. Если координаты точки М 0 (х 0 ,у 0) удовлетворяют уравнению (2.1), т.е. F(х 0 ,у 0)=0 – верное равенство, то точка М 0 лежит на данной линии. Верно и обратное утверждение.

Определение. Уравнением линии на плоскости называется уравнение, которому удовлетворяют координаты любой точки, лежащей на этой линии, и не удовлетворяют координаты точек, не лежащих на этой линии .

Если известно уравнение некоторой линии, то исследование геометрических свойств этой линии можно свести к исследованию ее уравнения – в этом заключается одна из основных идей аналитической геометрии. Для исследования уравнений существуют хорошо разработанные методы математического анализа, которые упрощают изучение свойств линий.

При рассмотрении линий используется термин текущая точка линии – переменная точка М(х,у ), перемещающаяся вдоль этой линии. Координаты х и у текущей точки называются текущими координатами точки линии.

Если из уравнения (2.1) можно явным образом выразить у
через х , т. е. записать уравнение (2.1) в виде , то кривую, определяемую таким уравнением, называют графиком функции f(х) .

1. Дано уравнение: , или . Если х принимает произвольные значения, то у принимает значения, равные х . Следовательно, линия, определяемая этим уравнением, состоит из точек, равноотстоящих от координатных осей Ох и Оу – это биссектриса I–III координатных углов (прямая на рис. 2.1).

Уравнение , или , определяет биссектрису II–IV координатных углов (прямая на рис. 2.1).

0 х 0 х С 0 х

рис. 2.1 рис. 2.2 рис. 2.3

2. Дано уравнение: , где С – некоторая постоянная. Это уравнение можно записать иначе: . Этому уравнению удовлетворяют те и только те точки, ординаты у которых равны С при любом значении абсциссы х . Эти точки лежат на прямой, параллельной оси Ох (рис. 2.2). Аналогично, уравнение определяет прямую, параллельную оси Оу (рис. 2.3).

Не всякое уравнение вида F(x,y )=0 определяет линию на плоскости: уравнению удовлетворяет единственная точка – О(0,0), а уравнению не удовлетворяет ни одна точка на плоскости.

В приведенных примерах мы по заданному уравнению строили определяемую этим уравнением линию. Рассмотрим обратную задачу: составить по заданной линии ее уравнение.


3. Составить уравнение окружности с центром в точке Р(a,b ) и
радиусом R.

○ Окружность с центром в точке Р и радиусом R есть совокупность точек, отстоящих от точки Р на расстоянии R. Это значит, что для любой точки М, лежащей на окружности, МР= R, если же точка М не лежит на окружности, то МР ≠ R.. ●

Цель: Рассмотреть понятие линии на плоскости, привести примеры. Основываясь на определение линии, ввести понятие уравнения прямой на плоскости. Рассмотреть виды прямой, привести примеры и способы задания прямой. Закрепить умение переводить уравнение прямой из общего вида в уравнение прямой «в отрезках», с угловым коэффициентом.

  1. Уравнение линии на плоскости.
  2. Уравнение прямой на плоскости. Виды уравнений.
  3. Способы задания прямой.

1. Пусть х и у – две произвольные переменные.

Определение : Соотношение вида F(x,y)=0 называется уравнением , если оно справедливо не для всяких пар чисел х и у.

Пример : 2х + 7у – 1 = 0 , х 2 + y 2 – 25 = 0.

Если равенство F(x,y)=0 выполняется для любых х, у, то, следовательно, F(x,y) = 0 – тождество.

Пример: (х + у) 2 - х 2 - 2ху - у 2 = 0

Говорят, что числа х 0 и у 0 удовлетворяют уравнению , если при их подстановке в это уравнение оно обращается в верное равенство.

Важнейшим понятием аналитической геометрии является понятие уравнения линии.

Определение : Уравнением данной линии называется уравнение F(x,y)=0, которому удовлетворяют координаты всех точек, лежащих на этой линии, и не удовлетворяют координаты никакой из точек, не лежащих на этой линии.

Линия, определяемая уравнением y = f(x), называется графиком функции f(x). Переменные х и у – называются текущими координатами, т. к. являются координатами переменной точки.

Несколько примеров определения линий.

1) х – у = 0 => х = у. Это уравнение определяет прямую:

2) х 2 - у 2 = 0 => (х-у)(х+у) = 0 => точки должны удовлетворять либо уравнению х - у = 0, либо уравнению х + у = 0, что соответствует на плоскости паре пересекающихся прямых, являющихся биссектрисами координатных углов:

3) х 2 + у 2 = 0. Этому уравнению удовлетворяет только одна точка О(0,0).

2. Определение: Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких–либо заданных начальных условий.

Уравнение прямой с угловым коэффициентом.



Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

xcosj + ysinj - p = 0 –нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

3. Уравнение прямой по точке и угловому коэффициенту.

Пусть угловой коэффициент прямой равен k, прямая проходит через точку М(х 0 , у 0). Тогда уравнение прямой находится по формуле: у – у 0 = k(x – x 0)

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.



error: Контент защищен !!